K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

A B C K Q G H E I F

Gọi I là giao điểm của CQ và AH, F là giao của BK và AG.

Áp dụng ĐL Céva cho \(\Delta\)AKB: \(\frac{CK}{CA}.\frac{EA}{EB}.\frac{FB}{FK}=1\). Mà \(\frac{EA}{EB}=1\) nên \(\frac{CK}{CA}=\frac{FK}{FB}\)

=> CF // AB (ĐL Thales đảo). Do AB vuông góc AC nên CF vuông góc AC    (1)

Áp dụng ĐL Mélelaus cho \(\Delta\)CKQ với bộ điểm (H I A) thẳng hàng: \(\frac{HQ}{HK}.\frac{IC}{IQ}.\frac{AK}{AC}=1\)

Tương tự với \(\Delta\)FKQ: \(\frac{HQ}{HK}.\frac{GF}{GQ}.\frac{BK}{BF}=1\)

Từ đó: \(\frac{HQ}{HK}.\frac{IC}{IQ}.\frac{AK}{AC}=\frac{HQ}{HK}.\frac{GF}{GQ}.\frac{BK}{BF}\). Mà \(\frac{AK}{AC}=\frac{BK}{BF}\)(ĐL Thales)

Nên \(\frac{IC}{IQ}=\frac{GF}{GQ}\). Áp dụng ĐL Thales đảo cho \(\Delta\)CQF, suy ra: GI // CF (2)

Từ (1) và (2) suy ra: GI vuông góc AC. Do đó: I là trực tâm của \(\Delta\)ACG => CI vuông góc AG

Hay ^AQC = 900 => Q nằm trên đường tròn đường kính AC cố định (đpcm).

6 tháng 4 2022

Cậu tham khảo:

undefined

6 tháng 4 2022

Em tham khảo bài này đi, a dốt toán lắm ;v

undefined

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

14 tháng 4 2019

bạn ưi đề sai ạ mk ko vẽ hik đc 

bạn xem lại đề hộ vs ạ

14 tháng 4 2019

trả lời

100% sai đề

hok tốt

8 tháng 1 2018

Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

2 tháng 5 2021

Giúp mình đi mai mik nộp r