Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác MDB vuông và tam giác NEC vuông có
BD=EC(gt),góc MBD=góc NCE( cùng bằng góc ACB)
=> tam giác MDB=tam giác NEC (cgv-gnk)
=> DM=EN
b) ta có góc DMI +góc MID=90 độ,góc ENI+góc EIN=90 độ
mà góc MID =góc NIE(dđ)
=> góc DMI=góc ENI
xét tam giác vuong MDI =tam giác vuong ENI (cgv-gnk)
=> MI=IN
mà I thuộc MN=> I là trung điểm của MN
c) gọi đường thẳng vuông góc với MN tại I là PI
ta có PI vừa là đường cao vừa là trung tuyến (PI vuong MN,I là tđ MN)
=> I cố định
=> PI luôn đi qua 1 điểm cố định
![](https://rs.olm.vn/images/avt/0.png?1311)
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, Vì △ABC cân tại A => AB = AC và ^ABC = ^ACB
Mà ^ACB = ^ECN (2 góc đối đỉnh)
=> ^ABC = ^ECN
Xét △DBM vuông tại D và △ECN vuông tại E
Có: BD = EC (gt)
^DBM = ^ECN (cmt)
=> △DBM = △ECN (cgv-gnk)
=> DM = EN (2 cạnh tương ứng)
2, Vì MD ⊥ BC (gt) ; NE ⊥ BC (gt)
=> MD // NE (từ vuông góc đến song song)
Xét △DMI vuông tại D và △ENI vuông tại E
Có: DM = EN (cmt)
^DMI = ^ENI (MD // NE)
=> △DMI = △ENI (cgv-gnk)
=> IM = IN (2 cạnh tương ứng)
Và I nằm giữa M, N
=> I là trung điểm MN
Xét △DMI vuông tại D => MI > DI (quan hệ cạnh huyền và cạnh góc vuông)
Xét △IEN vuông tại E => IN > IE (quan hệ cạnh huyền và cạnh góc vuông) => IN > IC + CE => IN > IC + BD (CE = BD)
Ta có: MI + IN > DI + IC + BD => MN > BC (đpcm)
3, Gọi AH là đường cao của △ABC
Gọi O là giao điểm của đường cao AH và đường vuông góc với MN tại I
Xét △ABH và △ACH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △ABH = △ACH (ch-cgv)
=> ^BAH = ^CAH (2 góc tương ứng)
Xét △ABO và △ACO
Có: AB = AC
^BAO = ^CAO (cmt)
AO là cạnh chung
=> △ABO = △ACO (c.g.c)
=> ^ABO = ^ACO (2 góc tương ứng) và OB = OC (2 cạnh tương ứng)
Xét △MIO vuông tại I và △NIO vuông tại I
Có: OI là cạnh chung
IM = IN (cmt)
=> △MIO = △NIO (cgv)
=> OM = ON (2 cạnh tương ứng)
Vì △MDB = △NEC (cmt) => MB = NC (2 cạnh tương ứng)
Xét △MBO và △NCO
Có: MB = NC (cmt)
OB = OC (cmt)
OM = ON (cmt)
=> △MBO = △NCO (c.c.c)
=> ^MBO = ^NCO (2 góc tương ứng)
Mà ^ABO = ^ACO (cmt)
=> ^ACO = ^NCO
Mà ^ACO + ^NCO = 180o (2 góc kề bù)
=> ^ACO : ^NCO = 180o : 2 = 90o
=> AC ⊥ OC
Ta thấy A, H, C cố định => O cố định (Là giao điểm của đường thẳng vuông góc với AC tại C và AH)
Vậy đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thuộc BC.
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.