K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

2=(p+q)(p2−pq+q2)>02=(p+q)(p2−pq+q2)>0

Dễ thấy p2−pq+q2>0p2−pq+q2>0 nên p+q>0p+q>0 (1)(1)

Mặt khác với mọi p,qp,q là số thực thì p2+q2⩾2pqp2+q2⩾2pq suy ra pq⩽(p+q)24pq⩽(p+q)24

Do đó 

2=(p+q)(p2−pq+q2)=(p+q)[(p+q)2−3pq]⩾(p+q)342=(p+q)(p2−pq+q2)=(p+q)[(p+q)2−3pq]⩾(p+q)34

→(p+q)3⩽8→p+q⩽2→(p+q)3⩽8→p+q⩽2 (2)(2)

Từ (1);(2) ta có đpcm

---------------------------------

P/s: làm thế có đúng không ạ

:D

3 tháng 7 2016

Câu 1 đề bài kiểu j thế..bn sửa lại đj

28 tháng 1 2017

mình đồng ý với lê chí công

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

11 tháng 9 2017

a. \(a^3+a^2c-abc+b^2c+b^3\)

<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)

<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

vì a+b+c =0 => đpcm

11 tháng 9 2017

b. 2(a+1)(b+1)=(a+b)(a+b+2)

<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)

<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)

<=> \(a^2+b^2=2\)=> đpcm

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

Vì $y>0$ nên \(x-y=x^3+y^3>x^3-y^3\)

\(\Rightarrow x-y>(x-y)(x^2+xy+y^2)\)

\(\Rightarrow (x-y)(x^2+xy+y^2-1)<0\)

\(x-y=x^3+y^3>0\Rightarrow x^2+xy+y^2-1<0\)

\(\Rightarrow x^2+xy+y^2<1\)

\(\Rightarrow x^2+y^2< x^2+xy+y^2 < 1 \) (đpcm)

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

6 tháng 8 2019

\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(\Leftrightarrow4a^3+4b^3-a^3-3a^2b-3ab^2-b^3\ge0\)

\(\Leftrightarrow3a^3-3a^2b-3ab^2+3b^3\ge0\)

\(\Leftrightarrow a^3-a^2b-ab^2+b^3\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

( Luôn đúng với mọi \(a;b>0\) )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

6 tháng 8 2019

làm giúp mình vài bài tìm GTNN đc không :>