K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

a;\(\frac{x}{-3}=\frac{4}{y}\)

\(\Rightarrow xy=-12\)

\(\Rightarrow x;y\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Xét bảng 

x1-12-23-312-126-64-4
y-1212-66-44-11-22-33

Vậy.................................................

b,\(\frac{2}{x}=\frac{y}{-9}\)

\(\Rightarrow xy=-18\)

\(\Rightarrow x;y\inƯ\left(-18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)

Xét bảng

x1-12-23-36-69-918-18
y-1818-99-66-33-22-11

Vậy...................................

c;\(\frac{x}{3}=\frac{y}{7}\)

\(\Rightarrow xy=21\)

\(\Rightarrow x;y\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Xét bảng

x1-13-37-721-21
y21-217-73-31-1

Vậy..........................

10 tháng 3 2022

a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)

\(\dfrac{y}{4}=2\Leftrightarrow y=8\)

b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x1-12-23-36-6
y6-63-32-21-1

 

10 tháng 3 2022

trả lời câu b đi ạ

22 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

9 tháng 8 2017

Đún đấyg

25 tháng 9 2016

\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)

\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

Vậy x = -1, y =0

21 tháng 9 2023

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

24 tháng 1 2021

xy + 2x - 3y = 9

\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3

\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3

\(\Leftrightarrow\) (2 + y)(x - 3) = 3

Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:

     x - 3         3          1         -1        -3
    2 + y         1          3        -3        -1
        x         6(TM)          4(TM)        2(TM)        0(TM)
        y        -1(TM)          1(TM)       -5(TM)       -3(TM)

Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}

Chúc bn học tốt!