K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

27 tháng 2 2022

BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc  (công thức nghiện thu gọn).

1) x2 - 11x + 38 = 0 ;

2) 6x2 + 71x + 175 = 0 ;

3) 5x2 - 6x + 27 =0 ;

4) - 30x2 + 30x - 7,5 = 0 ;

5) 4x2 - 16x + 17 = 0 ;

6) x2 + 4x - 12 = 0 ;

27 tháng 2 2022

Được chưa bạn?

30 tháng 1 2023

loading...

30 tháng 1 2023

Thank you

28 tháng 6 2019

Đây là phương trình đối xứng, cách giải những bài phương trình đối xứng khác cũng giống vậy nhé!

Xét x = 0 không phải là nghiệm của phương trình

Chia cả hai vế của phương trình cho x2, ta được:

\(2x^2-21x+74-\frac{105}{x}+\frac{50}{x^2}=0\\ \Rightarrow\left(2x^2+\frac{50}{x^2}\right)-\left(21x+\frac{105}{x}\right)+74=0\\ \Rightarrow2\left(x^2+\frac{25}{x^2}\right)-21\left(x+\frac{5}{x}\right)+74=0\)

Đặt \(x+\frac{5}{x}=y\Rightarrow x^2+\frac{25}{x^2}=y^2-10\)

Thay vào phương trình, ta được:

\(2\left(y^2-10\right)-21y+74=0\\ \Rightarrow2y^2-20-21y+74=0\\ \Rightarrow2y^2-21y+54=0\\ \Rightarrow\left(2y^2-12y\right)-\left(9y-54\right)=0\\ \Rightarrow2y\left(y-6\right)-9\left(y-6\right)=0\\ \Rightarrow\left(y-6\right)\left(2y-9\right)=0\\ \Rightarrow\left(x+\frac{5}{x}-6\right)\left(2x+\frac{10}{x}-9\right)=0\\ \Rightarrow x=1;x=2\)

28 tháng 6 2019

\(PT\Leftrightarrow\left(x^4-x^3\right)-\left(6x^3-6x^2\right)+\left(12x^2-12x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow x^3\left(x-1\right)-6x^2\left(x-1\right)+12x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(3x-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) (do \(x^2-3x+3>0\forall x\))

Vậy..

22 tháng 11 2015

a) 2x4 - x3 -2x2 -x +2=0

=> (2x4- 2x3) +(x3-x2) -(x2 -x) -(2x-2)=0

=>(x-1)(2x3+x2-x-2)=0

=>(x-1)2( 2x2+3x+2)=0 ( vì 2x2+3x+2>0)

=> x-1=0 => x =1

22 tháng 11 2015

chia cho x2 , rồi đặt ẩn

a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)

  Lập bảng xét dấu 

undefined

Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)

b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)

\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)

  Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)  

18 tháng 4 2017

A. \(\left(x+6\right)\left(3x-1\right)+x+6=0\)

\(\Leftrightarrow\left(x+6\right)\left(3x-1+1\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot3x=0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\3x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

Vậy.................................

B. \(\left(x+4\right)\left(5x+9\right)-x-4=0\)

\(\Leftrightarrow\left(x+4\right)\left(5x+9\right)-\left(x+4\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+9-1\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{-8}{5}\end{matrix}\right.\)

Vậy.......................................

18 tháng 4 2017

thanks