Tìm giá trị nhỏ nhất củ biểu thức:
C= -4 / (2x-3)^2+5
Giúp mk vs nha. Thank trc. Mk tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{-4}{\left(2x+3\right)^2+5}\)
\(\Rightarrow\)(2x + 3)^2 + 5 phải nhỏ nhất thì \(\dfrac{-4}{\left(2x+3\right)^2+5}\)mới lớn nhất.
\(\Rightarrow\)(2x + 3)^2 + 5 \(\le\) 5 thì \(\dfrac{-4}{\left(2x+3\right)^2+5}\)\(\ge\)\(\dfrac{-4}{5}\)
Vậy giá trị lớn nhất của biểu thức \(\dfrac{-4}{\left(2x+3\right)^2+5}\) là \(\dfrac{-4}{5}\), xảy ra khi x = \(\dfrac{-3}{2}\)
a)
tại\(x = 1 , GTBT A(x)\) là:
\(5.1 ^3 − 3.1 + 4\)
\(= 5.1 − 3.1 + 4\)
\(= 5 − 3 + 4\)
\(= 2 + 4\)
\(=6\)
Vậy tại\(x = 1 , GTBT A ( x ) là 6\)
Để A đạt GTNN thì 6/ /x/-3 đạt giá trị nhỏ nhất
để 6//x/-3 đạt GTNN thì /x/-3 là số nguyên âm lớn nhất có thể
\(\Rightarrow\)/x/-3=-1\(\Rightarrow\)/x/=2\(\Rightarrow\)x=+ - 2
\(\Rightarrow\)A min = 6/-1=-6
Vậy GTNN của A là -6 \(\Leftrightarrow\)x=+-2
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)
\(-\left|x+\dfrac{3}{4}\right|\le0\Rightarrow B=-\left|x+\dfrac{3}{4}\right|-3\le-3\)
\(maxB=-3\Leftrightarrow x=-\dfrac{3}{4}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)nên :
\(C=\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(C_{min}=\frac{-4}{5}\Leftrightarrow x=\frac{3}{2}\)