K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)

Vậy đề sai ~v  (hay là tui làm sai ta)

2 tháng 1 2019

1b) \(B=3\left|1-2x\right|-5\ge0-5=-5\)  (do \(\left|1-2x\right|\ge0\forall x\))

Dấu "=" xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy \(B_{min}=-5\Leftrightarrow x=\frac{1}{2}\)

18 tháng 3 2018

a) M=2018+|1-2x|

nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018

                    dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2

vậy giá trị nhỏ nhất của M=2018<=>x=1/2

b)N=2018-(1-2x)^2018

nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018

dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2

vậy giá trị lớn nhất của N=2018<=>x=1/2

c)P=7+|x-1|+|2-x|

áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có

P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8

dấu "=" xảy ra <=>(x-1). (2-x)=0

<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2

vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2

9 tháng 9 2021

\(a,-\left|2x-3\right|\le0,\forall x\Leftrightarrow-\left|2x-3\right|+3\le3\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(b,-\left|2-3x\right|\le0,\forall x\Leftrightarrow-\left|2-3x\right|-5\le-5\)

Dấu \("="\Leftrightarrow x=\dfrac{2}{3}\)

a: \(A=-\left|2x-3\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

b: \(B=-\left|2-3x\right|-5\le-5\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

26 tháng 11 2017

a,lớn nhất là vô tận nhỏ nhất là 0

các câu khác đều thế

26 tháng 11 2017

bạn nào có thể chỉ mk cách lam luôn dc ko

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)