Tim stn n de n+1 va n-3 la 2 snt cung nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU 2:
n.n + 3 chia hết cho n+2
=>n.n+2n-2n+3 chia hết cho n+2
=>n(n+2)-2n+3 chia hếtcho n+2
Do n(n+2) chia hết cho n+2 suy ra 2n+3 chia hết cho n+2
=>2n+4-1 chia hết cho n+2
=>2(n+2)- 1 chia hết cho n+2
do 2(n+2) chia hết cho n+2 suy ra 1 chia hết cho n+2 .
n thuộc rỗng . Nếu n thuộc Z thì mới tìm được n
Gọi \(ƯCLN\left(2n+3,4n+1\right)=d\)
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
\(4n + 1− (4n + 6) = −5⋮d\)
Để 2n + 3 và 4n + 1 nguyên tố cùng nhau d = 1
Với 2n + 3 không chia hết cho 5 vì 2n + 3 có tận cùng khác 0 và 5.
2n có tận cùng khác 7 và 2; n có tận cùng khác 1 và 6
Với 4n + 1 không chia hết cho 5 vì 4n + 1 có tận cùng khác 0 và 5
4n có tận cùng khác 9 và 4, n có tận cùng khác 1 và 6
Vậy n có tận cùng khác 1 và 6.
Ta có : x4 là số tự nhiên
Nên : 24n + 2 là số tự nhiên
=> 4n + 2 là số tự nhiên
=> 4n + 2 > -1
=> 4n > - 3
=> n > \(-\frac{3}{4}\)
4n+3 và 2n+3 là 2 số nguyên tố cùng nhau \(\Leftrightarrow\)n=1
\(Giai\)
\(Goi:d=\left(n+1,n-3\right).\)
\(taco:\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n-3\right)⋮d\Leftrightarrow4⋮d\Rightarrow d\in\left\{1;2;4\right\}\)
\(\left(n+1,n-3\right)=1\Leftrightarrow d=1\Leftrightarrow\orbr{\begin{cases}n+1=2k+1\left(k\inℕ\right)\\n-3=2k+1\left(k\inℕ\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2k\\n=2k+4\end{cases}}}\left(n,chẵn\right)\)
\(Vậy:với,n,chẵn,thì,:\left(n+1,n-3\right)=1\)