K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

\(Giai\)

\(Goi:d=\left(n+1,n-3\right).\)

\(taco:\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n-3\right)⋮d\Leftrightarrow4⋮d\Rightarrow d\in\left\{1;2;4\right\}\)

\(\left(n+1,n-3\right)=1\Leftrightarrow d=1\Leftrightarrow\orbr{\begin{cases}n+1=2k+1\left(k\inℕ\right)\\n-3=2k+1\left(k\inℕ\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2k\\n=2k+4\end{cases}}}\left(n,chẵn\right)\)

\(Vậy:với,n,chẵn,thì,:\left(n+1,n-3\right)=1\)

15 tháng 2 2016

CÂU 2:

n.n + 3 chia hết cho n+2

=>n.n+2n-2n+3 chia hết cho n+2

=>n(n+2)-2n+3 chia hếtcho n+2

Do n(n+2) chia hết cho n+2  suy ra 2n+3 chia hết cho n+2

=>2n+4-1 chia hết cho n+2

=>2(n+2)- 1 chia hết cho n+2

do 2(n+2) chia hết cho n+2 suy ra 1 chia hết cho n+2 .

n thuộc rỗng . Nếu n thuộc Z thì mới tìm được n

10 tháng 1 2018

Gọi \(ƯCLN\left(2n+3,4n+1\right)=d\)
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
\(4n + 1− (4n + 6) = −5⋮d\)
Để 2n + 3 và 4n + 1 nguyên tố cùng nhau d = 1
Với 2n + 3 không chia hết cho 5 vì 2n + 3 có tận cùng khác 0 và 5.
2n có tận cùng khác 7 và 2; n có tận cùng khác 1 và 6
Với 4n + 1 không chia hết cho 5 vì 4n + 1 có tận cùng khác 0 và 5
4n có tận cùng khác 9 và 4, n có tận cùng khác 1 và 6
Vậy n có tận cùng khác 1 và 6.

1 tháng 12 2016

Giải:

Gọi \(d=UCLN\left(3n+2;5n+3\right)\)

Ta có:

\(3n+2⋮d\)

\(5n+3⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+10⋮d\)

\(15n+9⋮d\)

\(\Rightarrow15n+10-15n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)

\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

1 tháng 12 2016

Gọi d là ƯCLN(3n+2,5n+3)

Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow15n+10-15n-9⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)

Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .

16 tháng 4 2016

- nếu n = 1 thì Q=1(chọn)

- nếu n=2 thì Q=3(loai)

- nếu n=3 thì Q=9=32(chọn)

- nếu n =4 thì Q= 33(loại)

- nếu n lớn hơn hoặc bằng 5 thì Q=1!+2!+3!+4!+...+n!

                                                Q=33+5!+...+n!

các số kể từ 5! trở đi trong tích đều chứa cặp thừa số 2 và 5 nên mỗi giai thừa có chữ số tận cùng là 0 

 => 33+...0=...3

số chính phương không có tận cùng 3 nên Q không phải số chính phương 

=> a lớn hơn hoặc bằng 5 bị loại

vậy n = 1 hoặc 3