cho tam giác ABC vuông cân tại A . Gọi I, J, K lần lượt là trung điểm của BC, AB, AC. Chứng minh:
a, IJ // AC, JK //BC, IK // AB
b, tứ giác JIAK là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CE/CA=CD/CB
nên ED//AB và ED=AB/2
=>AEDB là hình thang
mà góc EAB=90 độ
nênAEDB là hình thang vuông
b: Xét tứ giác ABKC có
D là trung điểm chung của AK và BC
góc BAC=90 độ
Do đó: ABKC là hình chữ nhật
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
hay ND=AB và ND//AB
Xét tứ giác ANMB có NM//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông
b: Xét tứ giác ABDN có
DN//AB
DN=AB
Do đó: ABDN là hình bình hành
mà \(\widehat{NAB}=90^0\)
nên ABDN là hình chữ nhật
a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)DF//AC hay DF//EC(1)
Lại có, xét \(\Delta ABC\): \(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) ED//BC hay ED//CF(2)
Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành
b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)
Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) EF//AB
Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)
Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)
\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE
c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)
Mà EA=DF (EDFA là hình chữ nhật)
\(\Rightarrow EK=DF\)
Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân
a: Xét tứ giác AKIH có
\(\widehat{AKI}=\widehat{AHI}=\widehat{HAK}=90^0\)
Do đó: AKIH là hình chữ nhật
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE