tìm x,biết | X - 2019| = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Th1:x-2019>0\)
\(x-2019-x+2019=0\)
\(0x=0\)
Vậy \(|x-2019|-x+2019=0\)với tất cả giá trị x
\(th2:x-2019< 0\)
\(-x+2019-x+2019=0\)
\(\Rightarrow2x=4038\)
\(\Rightarrow x=2019\)
a) (x - 1)3 - 1 = 0
<=> (x - 1)3 = 0 + 1
<=> (x - 1)3 = 1
<=> (x - 1)3 = 13
<=> x - 1 = 1
<=> x = 1 + 1
<=> x = 2
=> x = 2
b) (x - 4)2019 = 1
<=> (x - 4)2019 = 12019
<=> x - 4 = 1
<=> x = 1 + 4
<=> x = 5
=> x = 5
c) (x - 2019)2020 = 0
<=> (x - 2019)2020 = 02020
<=> x - 2019 = 0
<=> x = 0 + 2019
<=> x = 2019
=> x = 2019
d) (x - 1)2 = (x - 1)3
<=> x2 - 2x + 1 = x3 - 2x2 + x - x2 + 2x - 1
<=> x2 - 2x + 1 = x3 - 3x2 + 3 - 1
<=> x2 - 2x + 1 - x3 + 3x2 - 3 + 1 = 0
<=> 4x2 - 5x + 2 - x3 = 0
<=> (-x2 + 3x - 2)(x - 1) = 0
<=> (x2 - 3x + 2)(x - 1) = 0
<=> (x - 2)(x - 1)(x - 1) = 0
<=> x - 2 = 0 hoặc x - 1 = 0
x = 0 + 2 x = 0 + 1
x = 2 x = 1
=> x = 1 hoặc x = 2
gọi x+[x+1]+[x+2]+...+2018+2019=0là A
2A=[X+2019]+..+[2019+X]=0
=>X LÀ SỐ ĐỐI CỦA 2019
=>X=-2019
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
\(\left(x+20\right)^{2020}+\left|y+4\right|^{2019}=0\)
Ta thấy : \(\hept{\begin{cases}\left(x+20\right)^{2020}\ge0\forall x\\\left|y+4\right|^{2019}\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+20\right)^{2020}+\left|y+4\right|^{2019}\ge0\forall x,y\)
Do đó, dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+20\right)^{2020}=0\\\left|y+4\right|^{2019}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy : \(\left(x,y\right)=\left(-20,-4\right)\)
( x + 20 )2020 + | y + 4 |2019 = 0
Vì ( x + 20 )2020 \(\ge\)0
| y + 4 |2019 \(\ge\) 0
=> ( x + 20 )2020 + | y + 4 |2019 \(\ge\)0
Dấu " = " xảy ra khi
\(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}}\)
Vậy ................................
4x ( x- 2019 ) - x + 2019 = 0
4 x ( x-2019) - ( x - 2019) = 0
( x - 2019)( 4x - 1) = 0
\(\left[{}\begin{matrix}x-2019=0\\4x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\4x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Kết luận : \(x\)\(\in\) { \(\dfrac{1}{4}\); 2019}
\(4x\times\left(x-2019\right)-x+2019=0\)
\(4x\times\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(4x-1\right)\times\left(x-2019\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=0\\x-2019=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=0+1\\x=0+2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=1\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:4\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=2019\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4};x=2019\)
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1