3x=5y và x+y=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
1/ Ta có: -2x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=10\\\dfrac{y}{-2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.\left(-2\right)-20\end{matrix}\right.\)
Vậy x = 50; y = -20.
2/ Ta có: 3x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{3}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
Vậy x = 25; y = 15.
3/ Ta có: 4x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
Vậy x = 25; y = 20.
4/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=1\\\dfrac{y}{-5}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy x = 2; y = -5.
5/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
Vậy x = 38; y = 42.
\(-2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+-2}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.-2=-20\end{matrix}\right.\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{3x}{15}=\dfrac{2y}{8}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
\(x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.2=2\\y=1.\left(-5\right)=-5\end{matrix}\right.\)
\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)
Ta có:
x5=y6⇒x20=y24x5=y6⇒x20=y24 (1)(1)
y8=z7=y24=z21y8=z7=y24=z21 (2)(2)
Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3
⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63
Vậy x=60;y=72x=60;y=72 và z=63
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)
Ta có: \(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\dfrac{x}{5}=5\Rightarrow x=25\)
\(\dfrac{y}{3}=5\Rightarrow y=15\)