K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a/ Ta có

\(IA=IH;KC=KH\left(gt\right)\) => IK là đường trung bình của tg AHC => IK//AC

Mà \(AC\perp AB\)

\(\Rightarrow IK\perp AB\)

b/ Xét tg ABK có

\(AH\perp BK;IK\perp AB\) => I là trực tâm của tg ABK => \(BI\perp AK\) (trong tg 3 đường cao đồng quy)

cho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ...
Đọc tiếp

cho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DCcho tam giác ABC vuông tại A có góc B <60 độ . kẻ đường cao AH của tam giác ABC ,kẻ đường phân giác AK của tam giác AHC . Kẻ KE//AC (E thuộc AB ) , KE cắt AH tại I . Kẻ đường vuông góc với AK tại K cắt AC tại D . Chứng minh rằng : a)góc BAK = góc BKA , b)tam giác AEK = tam giác KHA ,c) BI là tia phân giác của góc ABK , d) KD>DC

1

a: góc BAK+góc CAK=90 độ

góc BKA+góc HAK=90 độ

mà góc CAK=góc HAK

nên góc BAK=góc BKA

b: XétΔAEK vuông tại E và ΔKHA vuông tại H có

AK chung

góc EAK=góc HKA

=>ΔAEK=ΔKHA

c: Xét ΔKAB có

KE,AH là đường cao

KE cắt AH tạiI

=>BI vuông góc AK

mà ΔBAK cân tại B

nên BI là phân giác của góc KBA

15 tháng 9 2017

Ta có: H B H C = 1 4 ⇒ HC = 4HB

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

A H 2 = B H . C H ⇔ 4 2 = 4 B H 2 ⇔ B H = 2 ( c m ) ⇒ C H = 8 ( c m )

Ta có: BC = BH + HC = 2 + 8 = 10 (cm)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

⇒ A B 2 = B H . B C ⇔ A B 2 = 2 . 10 ⇔ A B = 20 = 2 5 ( c m )

Áp dụng định lý Pitago cho ABH vuông tại A có: A B 2 + A C 2 = B C 2

⇔ 20 + A C 2 = 100 ⇔ A C 2 = 80 ⇒ A C = 80 = 4 5 ( c m )

Vậy chu vi tam giác ABC là: 4 5 + 2 5 + 10 = 6 5 + 10 c m

Đáp án cần chọn là: D

16 tháng 7 2021

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

23 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD

2 tháng 3 2022

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH^2=CH.BH\) (Hệ thức lượng).

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}.\)

Xét \(\Delta ABH\) và \(\Delta CAH:\)

\(\widehat{AHB}=\widehat{CHA}=\left(90^o\right).\\ \dfrac{AH}{CH}=\dfrac{BH}{AH}\left(cmt\right).\\ \Rightarrow\Delta ABH\sim\Delta CAH\left(c-g-c\right).\)

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

=>BA/BC=BH/BA

=>BA^2=BH*BC

5 tháng 11 2021

a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)

5 tháng 11 2021

Cảm ơn bn nhiều nhá