So sánh 2.3^54 và 6.5^32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)
\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)
Mà: \(8036054027>1568239201\)
\(\Rightarrow1568239201^5< 8036054027^5\)
\(\Rightarrow199^{20}< 2003^{15}\)
b) Xem lại đề
a)Ta có : \(32^{10}=2^{50}\)
\(16^{15}=2^{60}\)
Vì 50<60 =>2^50<2^60=>32^10<16^15
Vậy 32^10>16^15
b)Ta có : 6*5^22=(5+1)*5^22=5^23+5^22
Vì 5^23+5^22>5^23=>6*5^22>5^23
Vậy6*5^22>5^23
830.... 3220
830=83x10
=(83)10
=51210
3220=322x10
=(322)10
=102410
Vì 102410 >51210
=>3220 >830
554.... 381
554=56x9
=(56)9
=156259
381=39x9
=(39)9
=196839
Vì 196839 > 156259
=>381 > 554
1340.... 2161
1340=1340
2161=2160+1
=24x40+1
=(24)40+1
=1640+1
=1641
Vì 1641 >1340
=>2161 >1340
Ta có: 8^30=(2^3)^30=2^90 (1).
Và: 32^20=(2^5)^20=2^100 (2).
Từ (1) và (2) suy ra 2^90 < 2^100
Vậy 8^30 < 32^20.
Như vậy là bài toán đã xong rồi. Xin các bạn cho mình được không ạ.
=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101
=>2a=1/2(2/1x3+2/3x5+...+2/99x101)
từ đây tự làm
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow4A=\frac{100}{101}\)
\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)