\(\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+....+\frac{1}{198.1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101

=>2a=1/2(2/1x3+2/3x5+...+2/99x101)

từ đây tự làm

1 tháng 5 2018

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(\Rightarrow4A=\frac{100}{101}\)

\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)

28 tháng 4 2017

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101.4}=\frac{25}{101}\)

28 tháng 4 2017

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}:4=\frac{25}{101}\)

Ta có: A=1/11+1/12+1/13+...+1/30

            =(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)

\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)

\(\Rightarrow\)A<(1/10)*10+(1/20)*10

\(\Rightarrow\)A<1+1/2

\(\Rightarrow\)A<3/2<11/6

2 tháng 4 2018

cam on ban rat nhieu

21 tháng 5 2017

\(A=\frac{1}{2.1.3}+\frac{1}{2.3.5}+\frac{1}{2.5.7}+...+\frac{1}{2.99.101}\)

\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}\)

\(=\frac{50}{101}\)

21 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

Đặt :\(M=\frac{1}{2.6}+\frac{1}{6.10}+...+\frac{1}{194.198}\)

\(M=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{194}-\frac{1}{198}\right)\)

\(M=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{198}\right)\)

\(M=\frac{1}{4}.\frac{49}{99}\)

\(M=\frac{49}{396}\)

Đặt \(N=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(N=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(N=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(N=\frac{1}{2}.\frac{98}{303}\)

\(N=\frac{49}{303}\)

Vậy ta có : A = M + N = \(\frac{49}{396}+\frac{49}{303}\) , bạn tự tính luôn nha

18 tháng 4 2016

tất cả rút \(\frac{1}{2}\) ra ngoài ta có :

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

đến đây thì dễ rồi tự làm tiếp đi , ko hiểu thì hỏi nha

18 tháng 4 2016

cái này bn đặt làm hiệu sẽ ra ngay thôi!