ai làm giúp mik bài 5 trang 55 sgk lớp 7 với tặng 1 like cho người làm đúng
lớp 7 nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào hình vẽ, ta có:
Góc đối diện cạnh BC là Â
Góc đối diện cạnh AC là B̂
Góc đối diện cạnh AB là Ĉ
Mà: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn
Tam giác ABC có AB = 2cm, BC = 4cm, AC = 5cm ⇒ AB < BC < CA ⇒ Ĉ < Â < B̂.
2)heo định lý tổng ba góc trong tam giác ABC, ta có:
Cạnh đối diện góc B là AC
Cạnh đối diện góc C là AB
Cạnh đối diện góc A là BC
Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
Vì 450 < 550 < 800 hay B̂ < Ĉ < Â ⇒ AC < AB < BC.
Kiến thức áp dụng
+ Định lí 2: Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
+ Định lý tổng ba góc trong tam giác: Trong một tam giác, tổng ba góc bằng 180º.
3 a) Trong tam giác ABC có góc A là góc tù nên cạnh đối diện với góc A là cạnh lớn nhất.
Cạnh đối diện với góc A là BC nên suy ra cạnh BC lớn nhất.
b) Tam giác ABC là tam giác tù vì có 1 góc A tù.
Áp dụng định lý tổng ba góc trong tam giác ABC ta có
4) Trong một tam giác ta luôn có:
+ Góc đối diện với cạnh lớn hơn là góc lớn hơn
⇒ góc đối diện với cạnh nhỏ nhất là góc nhỏ nhất.
+ Góc nhỏ nhất luôn là góc nhọn.
(Giả sử tồn tại tam giác có góc nhỏ nhất không phải góc nhọn
⇒ Góc nhỏ nhất ≥ 90º ⇒ cả ba góc ≥ 90º ⇒ tổng ba góc trong tam giác ≥ 90º.3 = 270º.
5) + Trong ∆BCD có góc C tù (gt) nên góc C lớn nhất ⇒ BD lớn nhất (vì BD là cạnh đối diện với góc C) ⇒ BD > CD (1).
+ Áp dụng định lý góc ngoài trong tam giác BCD ta có :
nên góc ABD cũng là góc tù.
Trong ∆ABD có góc B tù (cmt) nên góc B lớn nhất ⇒ AD lớn nhất (vì AD là cạnh đối diện với góc B) ⇒ AD > BD
(2).
Từ (1) và (2) suy ra AD > BD > CD.
Vậy Hạnh đi xa nhất, Trang đi gần nhất.
6)Vì D nằm giữa A và C (giả thiết)
⇒ AC = AD + DC = AD + BC (DC = BC theo đề bài)
⇒ AC > BC
Mà trong tam giác ABC :
Góc đối diện cạnh AC là góc B
Góc đối diện cạnh BC là góc A
Ta lại có: AC > BC (cmt)
⇒ B̂ > Â (theo định lí 1)
Hay  < B̂.
Vậy kết luận c) là đúng.
7)
a) Trên tia AC, ta có : AC > AB mà AB = AB’ ⇒ AC > AB’ ⇒ B’ nằm giữa A và C.
⇒ tia B’B nằm giữa hai tia BA và BC.
b) ∆ABB’ có AB = AB’ nên ∆ABB’ cân tại A.
c) Vì góc AB'B là góc ngoài tại B’ của ∆BB’C
54. Đoạn lên dốc từ C đến A dài 8.5cm, đô dài CB bằng 7,5cm.
Tính chiều cao AB.
Theo địnhlípytago, ta có:
AB2 + BC2 = AC2
nên AB2 = AC2 – BC2
= 8,52 – 7,52
= 72,5-56,5=16
Vậy AB= 4
Bài 55 trang 131.Tính chiều cao của bức tường(h.129) biết rằng chiều cao của thang là 4m và chân thang cách tường 1m.
Theo đL pytago, ta có:
AC2+ BC2 = AB2
nên AC2 = AB2+BC2
Suy ra LAD = √15 ≈ 3.87
Luyện tập 1:
Bài 56 Toán 7 tập 1. Tam giác nào là Δvuông trong các Δcó độ dài ba cạnh như sau:
a) 9cm,15cm,12cm.
b) 5dm,13dm,12cm.
c)7m,7m,10m.
Đáp án: a) Ta có 92 = 81,152 = 225, 122 =144.
mà 225=81+144
hay 152=92+122.
Nên Δ có độ dài ba cạnh 9cm,15cm,12cm là Δ vuông.
b) Ta có 52=25,132=169,122=144.
Mà 169=25+144 nên Δ có độ dài ba cạnh 5dm, 13dm,12dm là Δvuông
c) Ta có 72=49, 102=100
vậy 72+ 72 ≠102
72+102 ≠72
Nên Δ có độ dài 3 canh là 7dm,7dm,10dm không phải là Δvuông.
Bài 54:
Theo định lí Pytago, ta có:
AB2+BC2=AC2
nên AB2=AC2–BC2
\(8.5^2-7.5^2\)
=72,5−56,5=16=
Vậy Ab =4 cm
Bài 55:
Theo đL pytago, ta có:
AC2+ BC2 = AB2
nên AC2 = AB2+BC2
Suy ra LAD = √15 ≈ 3.8
Bài 56:
a) Ta có 92 = 81,152 = 225, 122 =144.
mà 225=81+144
hay 152=92+122.
Nên Δ có độ dài ba cạnh 9cm,15cm,12cm là Δ vuông.
b) Ta có 52=25,132=169,122=144.
Mà 169=25+144 nên Δ có độ dài ba cạnh 5dm, 13dm,12dm là Δvuông
c) Ta có 72=49, 102=100
vậy 72+ 72 ≠102
72+102 ≠72
Nên Δ có độ dài 3 canh là 7dm,7dm,10dm không phải là Δvuông
1. wife
2. lazy
3. shoes
4. invitation
5. women
6. expensive
7. sad
8. light
Câu 6.6 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tính M=820+420425+645M=820+420425+645.
Giải
M=820+420425+645=(23)20+(22)20(22)25+(26)5M=820+420425+645=(23)20+(22)20(22)25+(26)5
=260+240250+230=240(220+1)230(220+1)=210=1024.=260+240250+230=240(220+1)230(220+1)=210=1024.
Câu 6.7 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (x4)2=x12x5(x≠0);(x4)2=x12x5(x≠0);
b) x10 = 25x8.
Giải
a) (x4)2=x12x5(x≠0)⇒x8=x7(x4)2=x12x5(x≠0)⇒x8=x7
⇒x8−x7=0⇒x7.(x−1)=0⇒x8−x7=0⇒x7.(x−1)=0
⇒x−1=0⇒x−1=0 (vì x7 ≠ 0)
Vậy x = 1.
b) x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0
Suy ra x8 = 0 hoặc x2 - 25 = 0.
Do đó x = 0 hoặc x = 5 hoặc x = -5.
Vậy x∈{0;5;−5}x∈{0;5;−5}.
Câu 6.8 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (2x+3)2=9121(2x+3)2=9121;
b) (3x−1)3=−827(3x−1)3=−827
Giải
a) (2x+3)2=9121=(±311)2(2x+3)2=9121=(±311)2
Nếu 2x+3=311⇒x=−15112x+3=311⇒x=−1511
Nếu 2x+3=−311⇒x=−18112x+3=−311⇒x=−1811
b) (3x−1)3=−827=(−23)3(3x−1)3=−827=(−23)3
⇔3x−1=−23⇔x=19
a/\(Vì\frac{1}{9}=\frac{2}{18}=\frac{3}{27}=\frac{4}{36}=\frac{5}{45}\)
Nên x và y là 2 đại lượng tỉ lệ thuận .
b/Ta có \(\frac{6}{72}\ne\frac{9}{90}\)
Nên x và y là 2 đại lượng không tỉ lệ thuận .