Câu 9: Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
A. 6
B. 4
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4 mặt phẳng.
⇒Có thể thấy đáp án bài này qua hình tứ diện.
Đáp án B
Cách 1: Vì 4 điểm đã cho là không đồng phẳng nên tạo thành 1 tứ diện.
Mà tứ diện có 4 mặt phẳng
Cách 2: Vì 4 điểm đã cho không đồng phẳng nên chọn 3 điểm bất kì cho ta 1 mặt phẳng
Do đó số mặt phẳng được xác định từ 4 điểm đã cho là \(C^3_4=4\)
Câu 9: Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
A. 6
B. 4
C. 3
D. 2
#HỌC TỐT!
Đáp án B
Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4 mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.
Chọn đáp án B.
Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.
Đáp án B
Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4 mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.
Đáp án D
Với 2 điểm bất kỳ luôn tạo thành 2 vectơ.
Số vectơ được tạo thành: vectơ.