K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Đáp án B

Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4  mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.

4 tháng 4 2019

Chọn đáp án B.

Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

14 tháng 5 2018

Chọn D

13 tháng 5 2019

Đáp án B

  A B → - 1 ; 2 ; 0 ,   A D → 1 ; - 2 ; 0 ,   A B → = - A D → ⇒ A , B , D thẳng hàng

Cứ 3 điểm không thẳng hàng cho ta một mặt phẳng

Số cách chọn 3 trong 5 điểm trên là  C 5 3 = 10

A,B,D thẳng hàng nên qua 3 điểm này không xác định được mặt phẳng

Số cách chọn 2 trong và điểm A,B,D và 1 điểm trong O và C là:  C 3 2 . C 2 1 = 6

Nếu chọn 2 trong 3 điểm A,B,D kết hợp cùng hai điểm còn lại sẽ ra một số mặt phẳng trùng nhau. Nên trường hợp này ta chỉ xác định được 2 mặt phẳng phân biệt

Vậy số mặt phẳng phân biệt đi qua 3 điểm O,A,B,C,D là: 10-1-6+2=5

4 tháng 1 2017

Đáp án B

Ta có A B → = - 1 ; 2 ; 0 A D → = 1 ; - 2 ; 0 ⇒ A B → + A D → = 0 ⇒ A , B , D  thẳng hàng

Do đó, 5 điểm O, A, B, C, D tạo thành tứ diện như hình vẽ bên

Vậy có tất cả 5 mặt phẳng cần tìm đó là:

+ Mặt phẳng (OAC) đi qua 3 điểm O, A, C.

+ Bốn mặt phẳng là các mặt bên của tứ diện O.BCD đi qua 3 điểm trong 5 điểm O, A, B, C, D.

5 tháng 5 2018

Đáp án B

A B → ( − 1 ; 2 ; 0 ) , A D → ( 1 ; − 2 ; 0 ) , A B → = − A D → ⇒ A , B , D  thẳng hàng

Cứ 3 điểm không thẳng hàng cho ta một mặt phẳng

Số cách chọn 3 trong 5 điểm trên là  C 5 3 = 10

A,B,D thẳng hàng nên qua 3 điểm này không xác định được mặt phẳng

Số cách chọn 2 trong và điểm A,B,D và 1 điểm trong O và C là:  C 3 2 . C 2 1 = 6

Nếu chọn 2 trong 3 điểm A,B,D kết hợp cùng hai điểm còn lại sẽ ra một số mặt phẳng trùng nhau. Nên trường hợp này ta chỉ xác định được 2 mặt phẳng phân biệt

Vậy số mặt phẳng phân biệt đi qua 3 điểm O,A,B,C,D là: 10 - 1 - 6 + 2 = 5

6 tháng 10 2017

Đáp án là B

13 tháng 11 2017

Đáp án D

Số cách chọn ra 3 điểm từ 2n điểm đã cho là C 2 n 3  suy ra số mặt phẳng được tạo ra là C 2 n 3 .

Do trong 2n điểm đã cho có n điểm đồng phẳng nên có C n 3  mặt phẳng trùng nhau.

Suy ra số mặt phẳng được tạo thành từ 2n điểm đã cho là C 2 n 3 − C n 3 + 1 .

1 tháng 11 2017

Đáp án A

⇒ A B → , A C → , A D →  đồng phẳng suy ra tồn tại vô số mặt phẳng cách đều 4 điểm trên

13 tháng 5 2017

⇒ A B → ,   A C → ,   A D →  đồng phẳng suy ra tồn tại vô số mặt phẳng cách đều 4 điểm trên