K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Uhhh...

Nếu \(x,y\ge0\) hoặc \(x,y\le0\) thì \(maxB=0\) khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\).

Nếu \(\left[{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) thì \(maxB=\infty\) nha bạn =)).

P/s: lần sau bạn đừng cho đề cộc lốc vậy nhaleuleu.

17 tháng 11 2023

\(x\) + 2y = 8

\(2y\)        = 8 - \(x\)

 y        = \(\dfrac{8-x}{2}\)

  y =  - \(\dfrac{x}{2}\) + 4

Thay y = - \(\dfrac{x}{2}\) + 4 vào biểu thức B = \(xy\) ta có: 

B = \(x\).(-\(\dfrac{x}{2}\) + 4)

B = - \(\dfrac{x^2}{2}\) + 4\(x\)

B = -\(\dfrac{1}{2}\). (\(x^2\)  - 8\(x\)  + 16)  +  8 

B = - \(\dfrac{1}{2}\).(\(x\) - 4)2 + 8

Vì  \(\dfrac{1}{2}\).(\(x\) - 4)2 ≥ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\) - 4)2 ≤ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\)  - 4)2 + 8 ≤ 8

Dấu bằng xảy ra khi:  \(x\) - 4 = 0 ⇒ \(x\) = 4; thay \(x\) = 4 vào biểu thức:

y = - \(\dfrac{1}{2}\) \(x\)+ 4 ta có y = - \(\dfrac{4}{2}\) + 4 = 2

Vậy giá trị lớn nhất của B là 8 xảy ra khi \(x\) = 4; y = 2

 

 

 

27 tháng 1 2021

a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12

= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

Vậy MaxA = 25/12 <=> x = 5/6

27 tháng 1 2021

b) Từ x + y = 7 => x = 7 - y

Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y

Dấu "=" xảy ra <=> y = 7/2 => x = 7/2

Vậy Max(xy) = 49/4 <=> x = y = 7/2

( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )

20 tháng 12 2019

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)

\(\Leftrightarrow2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow3\left(xy+yz+zx\right)\le9\)(x+y+z=3)

\(\Rightarrow\left(xy+yz+zx\right)\le3\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

21 tháng 12 2019

Hiển nhiên:

\(\frac{3}{4}\left(x-z\right)^2+\frac{1}{4}\left(x+z-2y\right)^2\ge0\)

\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow\left(xy+yz+zx\right)\le\frac{\left(x+y+z\right)^2}{3}=3\)

Đẳng thức xảy ra khi x = y = z = 1

Vậy Max B = 3.

Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)

Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)

Dấu "=" xảy ra khi $x=y=2$

22 tháng 2 2020

\(B=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow-2B=2x^2+2y^2-2xy-2x-4y\)

                    \(=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-8\)

                     \(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\)

vì \(\left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)\ge0\forall y\)nên

\(-2B=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\ge8\)

hay \(-2B\ge-8\Rightarrow B\le4\)

\(\Rightarrow maxB=4\Leftrightarrow\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}}\)

3 tháng 9 2020

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2+2.\left(xy+yz+zx\right)\ge xy+yz+zx+2.\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3.\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=2\)

Hay : \(B\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy \(GTLN\) của \(B=3\) khi \(x=y=z=1\)

3 tháng 9 2020

Ta có bất đẳng thức sau : \(xy+yz+zx\le x^2+y^2+z^2\)

\(< =>2\left(xy+yz+zx\right)\le2\left(x^2+y^2+z^2\right)\)

\(< =>2xy+2yz+2zx\le2x^2+2y^2+2z^2\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Khi đó ta được bất đăng thức \(xy+yz+zx\le x^2+y^2+z^2\)

\(< =>3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2=3^2=9\)

\(< =>xy+yz+zx\le\frac{9}{3}=3\) Tương đương \(B\le3\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy GTLN của B = 3 đạt được khi x = y = z = 1