Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(x+y+z=8\Leftrightarrow\left(x+y+z\right)^2=64\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=64\)
Mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Thay vào ta có: \(64\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx\le\frac{64}{3}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{8}{3}\)
Vậy Max(B) = 64/3 khi x = y = z = 8/3
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
Khi đó P=1.1+1.1+1.1=3
Có: \(x+y+z=3\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)
Vì: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0,\forall x,y,z\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)
\(\Leftrightarrow xy+yz+zx\le3\)
Vậu GTLN của P là 3 khi \(x=y=z=1\)
Tại sao
3(xy+yz+zx) \(\le x^2+y^2+z^2+2\left(xy+yz+zx\right)\)=9
\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)
\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)
\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...
Từ \(\left(x-y\right)^2\ge0\Rightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\Leftrightarrow2xy\le x^2+y^2\left("="\Leftrightarrow x=y\right)\)
Tương tự ta có: \(2yz\le y^2+z^2;2xz\le x^2+z^2\)
Cộng theo vế có: \(2xy+2yz+2xz\le2\left(x^2+y^2+z^2\right)\)
\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow xy+yz+xz+2yz+2xy+2xz\le x^2+y^2+z^2+2yz+2xy+2xz\)
\(\Rightarrow3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=9\)
\(\Rightarrow P\le3\). Dấu "=" xảy ra khi x=y=z=1
Bài này cay nghiệt thật ngay từ đầu ko cho x,y,z dương luôn cho nhanh (:|
\(\hept{\begin{cases}x+y+z=1\\P=xy+yz+zx\end{cases}}\)
\(\Leftrightarrow2P=x\left(z+y\right)+y\left(x+z\right)+z\left(x+y\right)\\ \)
\(\Leftrightarrow2P=x\left(3-x\right)+y\left(3-y\right)+z\left(3-z\right)\)
\(\Leftrightarrow2P=\left(3x-x^2\right)+\left(3y-y^2\right)+\left(3z-z^2\right)\)
\(\Leftrightarrow2P=\left(x+y+z\right)+3-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2-2z+1\right)\)
\(\Leftrightarrow2P=3+3-\left[\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\right]\)\(\ge6\) Đẳng thức khi x=y=z=1
\(\Rightarrow P\ge\frac{6}{2}=3\)
GTNN (p)=3
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)
\(\Leftrightarrow2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Rightarrow3\left(xy+yz+zx\right)\le9\)(x+y+z=3)
\(\Rightarrow\left(xy+yz+zx\right)\le3\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Hiển nhiên:
\(\frac{3}{4}\left(x-z\right)^2+\frac{1}{4}\left(x+z-2y\right)^2\ge0\)
\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow\left(xy+yz+zx\right)\le\frac{\left(x+y+z\right)^2}{3}=3\)
Đẳng thức xảy ra khi x = y = z = 1
Vậy Max B = 3.