K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Ta có: 4n+7 \(⋮n\)

Vì 4n \(⋮n\) nên 7 \(⋮\) n

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

Vậy.........................( Bạn tự kết luận nhé!)

11 tháng 1 2019

thanks bạn nhéoaoavuihaha

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

25 tháng 4 2023

ko nhìn ra

 

a: \(A=\dfrac{-13}{a}+\dfrac{7}{a}=\dfrac{-6}{a}\)

Để A là số nguyên thì \(a\inƯ\left(-6\right)\)

hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

b: \(B=\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)

Để B là số nguyên thì b chia hết cho 3

hay b=3k, với k là số nguyên

Để B là số nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{-1;-3;1;-5\right\}\)

2 tháng 2 2023

`B = 3/(n+2) (n ne -2)`

Để `B in ZZ`

`=> n+2 in Ư(3)=(+-1;+-3)`

`@ n+2 =1 => n= -1`

`@ n +2 =-1 => n=-3`

`@ n+2 = 3 => n= 1`

`@ n+2 = -3 => n=-5`

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$

$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$

$\Rightarrow 2n+7-2(n+3)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.

b.

Gọi $d$ là ƯCLN $(4n+6, 6n+7)$

$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$

$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$

Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.

$\Rightarrow d=1$

$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.