Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,
có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư
khi đó hiệu chúng sẽ chia hết cho6
Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5
Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du
Khi do hieu cua chung se chia het cho 6
Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4