K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Dùng nguyên lí Dirichle bạn ạ

Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3 

Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4

=> hiệu 2 số này chia hết cho 4

11 tháng 4 2015

ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,

có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư

khi đó hiệu chúng sẽ chia hết cho6

 

10 tháng 12 2017

Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5

Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du

Khi do hieu cua chung se chia het cho 6 

6 tháng 1 2015

Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11

9 tháng 1 2015

Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].

Ta có 12:11=1[dư 1]

Theo nguyên lí điricle sẽ tồn tại ít nhất

1+1=2[ số dư bằng nhau]

Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11

Vậy bài toán đã được chứng minh