cho tam giác có số đo các đường cao là các số nguyên, khoảng cách từ giao điểm của 3 đường phân giác đến cạnh của tam giác là 1
CMR : tam giác đó là tam giác đều
làm sai mik sửa cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình vẽ cái hình này , ai có khả năng thì giải dùm
gọi x,y,z lần lượt là các đường cao ứng với các cạnh a,b,c của tam giác .để thấy rằng đường cao của 1 tam giác luôn lớn hơn hai lần khoảng cách từ giao điểm của 3 đường phân giác đến cạnh của tam giác , tức là :x > 2 , ý > 2, Z > 2
vì x,y,z \(\in\)Z , nên x > 3 , y > 3, z > 3
Do đó : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (1)
Mặt khác \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{a}{ax}+\frac{b}{by}+\frac{c}{cz}=\frac{a+b+c}{2S_{ABC}}=1\) (2)
từ (1) và (2) ta có x = y = z = 3
vậy tam giác ABC đều