K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Bài làm

 a)               S = \(3^0\)\(3^2\)\(3^4\)+ ......+ \(3^{2002}\)

        \(3^2\)S =  \(3^2\) + \(3^4\)\(3^6\)+ ..... + \(3^{2004}\)

  \(3^2\)S - S =  \(3^{2004}\) - \(3^0\)

  9 . S - S    =  \(3^{2004}\) - \(3^0\)

    8 . S        =  \(3^{2004}\) - \(3^0\)

      S           =  \(\frac{3^{2004}-3^0}{8}\)

5 tháng 1 2019

a. S = 30 + 32 + 34 + ... + 32002

32S  = 32( 30 + 32 + 34 + ... + 32002 )

9S    = 32 + 34 + 36... + 32004

9S - S = (32 + 34 + 36... + 32004 ) - ( 30 + 32 + 34 + ... + 32002)

8S     = 32004 - 1

   S     = (32004 - 1) : 8

b. Có S = 30 + 32 + 34 + ... + 32002 có 1002 số hạng

             = ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 ) có 334 nhóm.

             =     91                  + 36 (30 + 32 + 34 ) + ... + 31998( 30 + 32 + 34 )

             =  91                     + 36 . 91                   + ... + 31998 . 91

              =91 ( 1 + 36 + ... + 31998 ) = 7 . 13 . ( 1 + 36 + ... + 31998 

Vì ( 1 + 36 + ... + 31998 \(\in\)

\(\Rightarrow\)7 . 13 . ( 1 + 36 + ... + 31998 )  \(⋮\)

Hay S \(⋮\)7 ( đpcm )

31 tháng 10 2021

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

11 tháng 10 2021

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

17 tháng 10 2021

undefined

7 tháng 1 2021

giup minh voi

 

7 tháng 1 2021

tham khảo

https://olm.vn/hoi-dap/detail/49371559502.html

Ta có: \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)

\(=10+3^4\cdot10+...+3^{96}\cdot10\)

\(=10\left(1+3^4+...+3^{96}\right)⋮10\)(ĐPCM)

16 tháng 1 2022

\(S=1+3+3^2+3^3+...+3^8+3^9\)

\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+...+3^8\right)⋮4\)

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)

17 tháng 12 2021

Các bạn giúp mình nhé

18 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)