Chứng minh 3 điểm thẳng hàng là chứng minh ntn vậy các bạn ?
Chỉ tớ với , sắp thi hk rồi T_T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AMC\) và \(\Delta BMC\), có:
\(MA=MB\) (vì M là trung điểm của AB)
\(\widehat{BMC}=\widehat{AMC}\left(=90^o\right)\)
\(MC\) là cạnh chung
\(\Rightarrow\Delta AMC=\Delta BMC\left(c-g-c\right)\)
b) Ta có: AM = BH (gt)
và AM = BM (vì M là trung điểm của AB)
\(\Rightarrow MH=MK\)
Xét \(\Delta CKM\) và \(\Delta CHM\), có:
MH = MK (cmt)
\(\widehat{CMK}=\widehat{CMH}\left(=90^o\right)\)
MC là cạnh chung
\(\Rightarrow\Delta CKM=\Delta CHK\) (c - g - c)
\(\Rightarrow CH=CK\left(đpcm\right)\)
Học tốt
Chứng minh chiều thuận:
Giả sử có tam giác ABC cân tại A, đương nhiên trung tuyến và phân giác kẻ từ A của tam giác này trùng nhau. Mà trọng tâm D thuộc trung tuyến kẻ từ A, giao điểm các đường phân giác trong E thuộc phân giác trong kẻ từ A nên AD, AE trùng nhau, do đó A, D, E thẳng hàng.
Chứng minh chiều đảo:
Giả sử A, D, E thẳng hàng. Dễ thấy rằng khi đó AD, AE lần lượt là trung tuyến và phân giác trong của tam giác ABC. Mà A, D, E thẳng hàng \(\Rightarrow AD\equiv AE\), do đó tam giác ABC cân tại A (Dấu hiệu nhận biết)
À không, xin lỗi bạn, bài đó mình làm lộn đề đó. Bài này mới đúng nhé:
thuận: (giả sử tam giác ABC cân tại A):
Khi đó \(\widehat{ABC}=\widehat{ACB}\). Mà BD, CD là 2 trung tuyến kẻ từ B, C nên \(BD=CD\) \(\Rightarrow\widehat{DBC}=\widehat{DCB}\). Từ đó dễ thấy \(\widehat{DBA}=\widehat{DCA}\), mà BE, CE là các phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBE}=\widehat{DCE}\). Từ đây dễ thấy \(\widehat{EBC}=\widehat{ECB}\) \(\Rightarrow EB=EC\). Do đó, E nằm trên đường trung trực của đoạn BC.
Mà AD chính là trung trực của BC (Do tam giác ABC cân tại A có AD là trung tuyến) \(\Rightarrow E\in AD\Rightarrowđpcm\)
đảo: (giả sử A,D,E thẳng hàng)
Ta thấy AD chính là trung trực của đoạn BC, mà A,D,E thẳng hàng nên E thuộc trung trực của BC \(\Rightarrow EB=EC\Rightarrow\widehat{EBC}=\widehat{ECB}\)
Đồng thời \(\widehat{DBC}=\widehat{DCB}\) , từ đó \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)
Mà BE, CE lần lượt là phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBA}=\widehat{DCA}\). Bằng phép cộng góc, ta dễ dàng suy ra \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow\Delta ABC\) cân tại A.
Cách thứ nhất là chứng minh góc đó là góc bẹt
cách thứ 2 mình ko nhớ