Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M,N lần lượt là giao điểm của AD với BC và BE với AC
Các \(\hept{\begin{cases}\widehat{ANB}\\\widehat{AMB}\end{cases}}\)là 2 góc có đỉnh nằm bên trong đường tròn nên ta có:
\(\widehat{ANB}=\frac{1}{2}\)(sđ \(\widebat{EC}\)+ sđ \(\widebat{AB}\)) =90o (vì BE_|_ AC)
\(\widehat{AMB}=\frac{1}{2}\)(sđ \(\widebat{DC}\)+ sđ \(\widebat{AB}\))=90o (vì AD _|_ BC)
Vậy ta có: \(sđ\widebat{CE=sđ\widebat{CD}}\)\(\Leftrightarrow CD=CE\left(đpcm\right)\)
Nguồn: loigiaihay.com
a) Ta thấy: \(\Delta\)ABC nhận H làm trực tâm nên ^BHC + ^BAC = 1800 (1)
Ta có: ^FKE = ^BKC = 1800 - ^KBC - ^KCB = 1800 - ^EAD - ^FAD = 1800 - ^EAF => ^BKC + ^BAC = 1800 (2)
Từ (1) và (2) suy ra: ^BHC = ^BKC => Tứ giác BHKC nội tiếp => ^KHC = ^KBC = ^CAD
Mà AD đi qua tâm ngoại tiếp (O) của \(\Delta\)ABC, AH vuông góc BC nên dễ thấy ^CAD = ^BAH
Từ đó: ^KHC = ^BAH = ^BCH => HK // BC (2 góc so le trong bằng nhau) (đpcm).
b) Qua B kẻ đường thẳng song song với CK cắt (O) tại điểm thứ hai G.
Xét (O): ^BGC + ^BAC = 1800. Mà ^BKC + ^BAC =1800 (cmt) nên ^BGC = ^BKC
=> ^KBC = ^GCB => BK // CG => Tứ giác BKCG là hình bình hành => S = SBGC
Hạ GT vuông góc BC thì S = SBGC = GT.BC/2 < G0L.BC/2 (Với G0 là điểm chính giữa cung BC không chứa A)
Lại có: ^LBG0 = 1/2.Sđ(BC = ^BAC/2 => G0L = BL.tan^BAC/2 hay G0L = BC/2 . tan^BAC/2
Suy ra: S < BC/2 . tan^BAC/2 . BC/2 = (BC/2)2.tan^BAC/2 (đpcm).
c) +) Chứng minh BF.BA - CE.CA = BD2 - CD2 ?
Theo tính chất góc nội tiếp: ^KED = ^BED = ^BAD = ^DAF = ^DCF = ^DCK => Tứ giác DKEC nội tiếp
Tương tự: Tứ giác DKFB nội tiếp. Áp dụng phương tích đường tròn:
BF.BA - CE.CA = BD.BC - CD.CB = BC(BD-CD) = (BD+CD)(BD-CD) = BD2 - CD2 (đpcm).
+) Chứng minh: DI vuông góc với BC ?
Từ câu a ta có: ^EKF + ^EAF = 1800 => Tú giác AEKF nội tiếp => K nằm trên (AEF)
Nối I với E và F thì có: ^IFK + ^IEK = ^IKF + ^IKE = ^EKF = ^BKC
=> ^IFK + ^IEK + ^KBC + ^KCB = ^IFK + ^IEK + ^KFD + ^KED = ^IFD + ^IED = 1800 (Do DKEC;DKFB nội tiếp)
Suy ra: Tứ giác DEIF nội tiếp => ^IDF = ^IEF = ^IFE = ^IDE. Kết hợp với ^BDF = ^CDE (=^BAC)
Dẫn đến ^IDF + ^BDF = ^IDE + ^CDE => ^IDB = ^IDC => ID vuông góc BC (2 góc kề bù bằng nhau) (đpcm).
Chứng minh chiều thuận:
Giả sử có tam giác ABC cân tại A, đương nhiên trung tuyến và phân giác kẻ từ A của tam giác này trùng nhau. Mà trọng tâm D thuộc trung tuyến kẻ từ A, giao điểm các đường phân giác trong E thuộc phân giác trong kẻ từ A nên AD, AE trùng nhau, do đó A, D, E thẳng hàng.
Chứng minh chiều đảo:
Giả sử A, D, E thẳng hàng. Dễ thấy rằng khi đó AD, AE lần lượt là trung tuyến và phân giác trong của tam giác ABC. Mà A, D, E thẳng hàng \(\Rightarrow AD\equiv AE\), do đó tam giác ABC cân tại A (Dấu hiệu nhận biết)
À không, xin lỗi bạn, bài đó mình làm lộn đề đó. Bài này mới đúng nhé:
thuận: (giả sử tam giác ABC cân tại A):
Khi đó \(\widehat{ABC}=\widehat{ACB}\). Mà BD, CD là 2 trung tuyến kẻ từ B, C nên \(BD=CD\) \(\Rightarrow\widehat{DBC}=\widehat{DCB}\). Từ đó dễ thấy \(\widehat{DBA}=\widehat{DCA}\), mà BE, CE là các phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBE}=\widehat{DCE}\). Từ đây dễ thấy \(\widehat{EBC}=\widehat{ECB}\) \(\Rightarrow EB=EC\). Do đó, E nằm trên đường trung trực của đoạn BC.
Mà AD chính là trung trực của BC (Do tam giác ABC cân tại A có AD là trung tuyến) \(\Rightarrow E\in AD\Rightarrowđpcm\)
đảo: (giả sử A,D,E thẳng hàng)
Ta thấy AD chính là trung trực của đoạn BC, mà A,D,E thẳng hàng nên E thuộc trung trực của BC \(\Rightarrow EB=EC\Rightarrow\widehat{EBC}=\widehat{ECB}\)
Đồng thời \(\widehat{DBC}=\widehat{DCB}\) , từ đó \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)
Mà BE, CE lần lượt là phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBA}=\widehat{DCA}\). Bằng phép cộng góc, ta dễ dàng suy ra \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow\Delta ABC\) cân tại A.