K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Hình bạn tự vẽ :>

a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)

Tương tự: \(\Delta GBC\) có MN là đường trung bình

\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành

27 tháng 12 2018

b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)

4 tháng 6 2020

làm giúp mình 4 bài còn lại với nha, mình cảm ơn !!

4 tháng 6 2020

Hai câu còn lại bạn nên làm

Y
23 tháng 6 2019

+ Gọi I là trung điểm của GC

+ EI là đg trung bình của ΔAGC

\(\Rightarrow\left\{{}\begin{matrix}EI=\frac{1}{2}AG\\EI//AG\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EI=\frac{1}{2}AG\\EI//HF\end{matrix}\right.\)

+ Tương tự ta cm đc : \(\left\{{}\begin{matrix}FI=\frac{1}{2}BG\\FI//HE\end{matrix}\right.\)

+ Tứ giác HEIF có \(\left\{{}\begin{matrix}HE//FI\\EI//HF\end{matrix}\right.\)

=> Tứ giác HEIF là hbh

\(\Rightarrow\left\{{}\begin{matrix}HE=FI\\HF=EI\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BG=2HE\\AG=2HF\end{matrix}\right.\)

27 tháng 9 2016

Tỉ só của BD và ID=4 thì phải. Nếu bn cần lời giải thì mình nhằn cho

Bài 1: 

a: Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: BM=CM=16cm

\(AM=\sqrt{34^2-16^2}=30\left(cm\right)\)

AG=2/3AM=20(cm)

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
29 tháng 11 2017

Cô hướng dẫn nhé.

a) Theo tính chất giao ba đường trung tuyến, ta có \(\frac{CG}{CE}=\frac{2}{3}\Rightarrow CG=8\)

Tương tự BG = 6

Xét tam giác BGC thỏa mãn định lý Pi-ta-go đảo ta có \(\widehat{BGC}=90^o\)

b) Ta thấy \(\frac{S_{BGC}}{S_{ABC}}=\frac{S_{BGC}}{S_{BEC}}.\frac{S_{BEC}}{S_{ABC}}=\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\)

Ta tính được SBGC nên dễ dàng suy ra SABC

7 tháng 12 2019

Rev\(\hept{\begin{cases}\\\\Dfgvudgfvgdfsuyhgvhsdf\end{cases}}\)ckwdjoicjudwucidwucuoweuo

AH
Akai Haruma
Giáo viên
14 tháng 1 2024

Lời giải:
Tam giác $ABC$ vuông cân tại $A$ nên trung tuyến $AM$ đồng thời cũng là đường cao

$\Rightarrow \widehat{AMC}=90^0(1)$
Mà $\widehat{ACM}=45^0(2)$ (tính chất tam giác vuông cân) 

Từ $(1); (2)\Rightarrow AMC$ là tam giác vuông cân tại $M$

$\Rightarrow MA=MC=MB$

Xét tam giác $ABH$ và $CAK$ có:

$AB=CA$

$\widehat{AHB}=\widehat{CKA}=90^0$

$\widehat{ABH}=\widehat{CAK}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle ABH=\triangle CAK$ (ch-gn)

$\Rightarrow BH=AK$ và $AH=CK$

Xét tam giác $MBH$ và $MAK$ có:

$\widehat{MBH}=\widehat{MAK}$ (cùng phụ $\widehat{BEH}$)

$MB=MA$

$BH=AK$ (cmt)

$\Rightarrow \triangle MBH=\triangle MAK$ (c.g.c)

$\Rightarrow MH=MK(*)$

Xét tam giác $AMH$ và $CMK$ có:

$AM=CM$ (cmt)

$AH=CK$ (cmt)

$MH=MK$ (cmt)

$\Rightarrow \triangle AMH=\triangle CMK$ (c.c.c)

$\Rightarrow \widehat{AMH}=\widehat{CMK}$

$\Rightarrow \widehat{AMH}+\widehat{HME}=\widehat{CMK}+\widehat{HME}$

$\Rightarrow \widehat{AME}=\widehat{HMK}$
$\Rightarrow \widehat{HMK}=90^0(**)$

Từ $(*); (**)\Rightarrow MHK$ vuông cân tại $M$

AH
Akai Haruma
Giáo viên
14 tháng 1 2024

Hình vẽ: