Cho mk hỏi câu này
1/x^2-1+1/(x+1)+1/(1-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: \(x+3\left(x+8\right)=40\)
\(\Rightarrow x+3x+3.8=40\)
\(x\left(1+3\right)+24=40\)
\(4x=40-24\)
\(4x=16\Rightarrow x=\frac{16}{4}=4\)
Câu 2: \(24+2\left(x+2\right)=80\)
\(\Rightarrow2x+2.2=80-24\)
\(2x=80-24-2.2\)
\(2x=80-24-2.2=52\)
\(\Rightarrow x=\frac{52}{2}=26\)
Câu 3: \(5x-2x=60\)
\(\Rightarrow x\left(5-2\right)=60\)
\(3x=60\Rightarrow x=\frac{60}{3}=20\)
Có chỗ nào ko hiểu nhắn mk nhé
x+3(x+8)=40
x+3x+24=40
4x+24=40
4x=16
x=4
24+2(x+2)=80
24+2x+4=80
28+2x=80
2x=52
x=26
Câu 1 : \(-a.\left(c-d\right)-d.\left(a+c\right)=-c.\left(a+d\right)\)
Ta có : \(VT=-a.\left(c-d\right)-d\left(a+c\right)\)
\(=-ac+ad-da-dc\)
\(=-ac-dc\)
\(=-c\left(a+d\right)=VP\)
\(\Rightarrow-a\left(c-d\right)-d\left(a+c\right)=-c\left(a+d\right)\left(đpcm\right)\)
Câu 2 :
1, \(x.\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
2, \(\left(x+12\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
3, \(\left(-x+5\right)\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4, \(x\left(2+x\right)\left(7-x\right)=0\)
\(\Rightarrow x=0;2+x=0\)hoặc \(7-x=0\)
\(\Rightarrow x=0;x=-2\)hoặc \(x=7\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\left(đk:x\ge1\right)\)
\(< =>\sqrt{x-2\sqrt{x-1}}^2=\left(\sqrt{x-1}-1\right)^2\)
\(< =>x-2\sqrt{x-1}=x-1+1-2\sqrt{x-1}\)
\(< =>x-2\sqrt{x-1}+2\sqrt{x-1}=x< =>x=x\)
Vậy phương trình trên thỏa mãn với mọi \(x\ge1\)
ĐKXĐ : \(x\ge1\)
Bình phương 2 vế lên ta có :
\(x-2\sqrt{x-1}=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-2\sqrt{x-1}\)
\(\Leftrightarrow0x=0\)( luôn đúng với mọi \(x\ge1\))
Vậy ...............
câu 1:
3.(x+2) + 5x = 22
=> 3x + 6 + 5x = 22
=> 8x = 22 - 6 = 16
=> x = 16/8 = 2
câu 2:
2(x + 1) + 5(x + 2) = 61
=> 2x + 2 + 5x + 10 = 61
=> 7x + 12 = 61
=>7x = 61 - 12 = 49
=> x = 49/7 = 7
hok tốt
# kiseki no enzeru #
C1:
3( x + 2 ) + 5x = 22
3x + 6 + 5x = 22
3x + 5x = 22 - 6
8x = 16
x = 16 : 8
x = 2
C2:
2( x + 1 ) + 5( x +2 ) = 61
2x + 2 + 5x + 10 = 61
2x + 5x = 61 - 2 - 10
7x = 49
x = 49 : 7
x = 7
~ Hok tốt ~
Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)
=> 11x \(\ge\)0
=> x \(\ge\)0
Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x=\frac{10}{11}\)
ĐKXĐ: x khác 1,-1
\(\frac{1}{x^2-1}+\frac{1}{x+1}+\frac{1}{1-x}=\frac{1}{\left(x-1\right).\left(x+1\right)}+\frac{x-1}{\left(x-1\right).\left(x+1\right)}-\frac{x+1}{\left(x-1\right).\left(x+1\right)}\)
\(=\frac{1+x-1-x-1}{\left(x-1\right).\left(x+1\right)}=\frac{-1}{\left(x-1\right).\left(x+1\right)}\)