K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

Bài 1.

a,Vì \(\dfrac{a}{b}>1\)=>a<b

Với m∈N* Ta có

 \(am> bm\)=>\(am+ab> bm+ab\)=>\(a\left(b+m\right)> b\left(a+m\right)\)=>\(\dfrac{a}{b}>\dfrac{a+m}{b+m} \)

b, Vì \(\dfrac{a}{b}< 1\)=>a<b

Với m∈N* =>

 \(am< bm\)=>\(am+ab< bm+ab\)=>\(a\left(b+m\right)< b\left(a+m\right)\)=>\(\dfrac{a}{b}<\dfrac{a+m}{b+m} \)

Tự áp dụng cho bài 2 nhé bạn :)

AH
Akai Haruma
Giáo viên
26 tháng 10 2023

Bạn cần giải thích bài nào nhỉ?

Bài 7:

a. \(x+\dfrac{2}{5}=\dfrac{6}{7}\)

\(x=\dfrac{6}{7}-\dfrac{2}{5}=\dfrac{16}{35}\)

b. \(x=6,3.1,5=9,45\)

Câu 8: 

Đáy bé là: \(\dfrac{2}{3}.120=80\) m 

Diện tích thửa ruộng là: 

( 120 + 80) x 76 : 2 = 7600 m vuông 

Số kg thu hoạch được là: 

7600 : 100 x 64,5 = 4902 kg 

Đổi 4902 kg = 49,02 tạ thóc

 

25 tháng 10 2023

\(\left|x+\dfrac{1}{7}\right|-\dfrac{2}{3}=0\)

\(\Rightarrow\left|x+\dfrac{1}{7}\right|=0+\dfrac{2}{3}\\ \Rightarrow\left|x+\dfrac{1}{7}\right|=\dfrac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{7}=\dfrac{2}{3}\\x+\dfrac{1}{7}=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{1}{7}\\x=-\dfrac{2}{3}-\dfrac{1}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{21}\\x=-\dfrac{17}{21}\end{matrix}\right.\)

25 tháng 10 2023

em cảm ơn nhiều ạ

 

NV
28 tháng 7 2021

\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)

\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)

\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)

\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)

\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{5-9-2\left(5-7\right)}{2}\)

\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)

\(=0\)

 

14 tháng 1 2022

A e nhé

14 tháng 1 2022

A

7 tháng 9 2021

a, \(n_{H_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\)

PTHH: Fe + 2HCl → FeCl2 + H2

Mol:     0,15     0,3                    0,15

\(m_{Fe}=0,15.56=8,4\left(g\right);m_{Cu}=10-8,4=1,6\left(g\right)\)

b,\(m_{HCl}=0,3.36,5=10,95\left(g\right)\)

\(\Rightarrow m_{ddHCl}=\dfrac{10,95.100\%}{36,5\%}=30\left(g\right)\)

7 tháng 9 2021

sai đề rồi

tính mol ra số âm là hiểu

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.