Tính tổng :A=3+3^2+3^3+3^4+....+3^20 chia hết cho 4 ,cho 40
Giải giúp mình nhé! Thank you! Minh sẽ cho 5tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
\(A=3+3^2+3^3+...+3^{20}\)
\(\Rightarrow3A=3^2+3^3+...+3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-3\)
\(\Rightarrow A=\frac{3^{21}-3}{2}\)