Cho n là số nguyên dương. C/m:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}< \dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)
Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)
Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)
\(\Leftrightarrow3n^2\ge m^2+2\)
Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)
\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)
\(C=\dfrac{n+2+n+3+n+4}{n+1}=\dfrac{3n+9}{n+1}\)
Để C là số nguyên thì \(n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
#include <bits/stdc++.h>
using namespace std;
double s,a;
int i,n;
int main()
{
cin>>a;
s=0;
n=0;
while (s<=a)
{
n=n+1;
s=s+1/(n*1.0);
}
cout<<n;
return 0;
}
Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}\)
\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{n}{3^{n-1}}\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}-\dfrac{n}{3^n}< 1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Tương tự ta được \(2B=3-\dfrac{1}{3^{n-1}}< 3\)
\(\Rightarrow B< \dfrac{3}{2}\Rightarrow2A< \dfrac{3}{2}\Rightarrow A< \dfrac{3}{4}\)(đpcm)
BonkingTrần Trung Nguyên làm giùm bài này luôn đi