Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3

Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với

Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1

Bài 1:
Q = A.B = \(\dfrac{x-3}{x+1}\).\(\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
= \(\dfrac{x-3}{x+1}\).\(\dfrac{x+3}{x-3}\)=\(\dfrac{x+3}{x+1}\)
= \(\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\)
Để biểu thức Q có giá trị là một số nguyên thì \(\dfrac{2}{x+1}\)nguyên
=> x+1 \(\in\) Ư(2)
Mà Ư(2) = { -1;1;2;-2}
Ta có bảng:
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Điều kiện xác định của biểu thức Q là x ≠ -1,3,-3
Vậy x ∈ { 0;-2;1;-3}
Bài 2:
\(P=\left(\dfrac{\left(2x-1\right)\left(x-3\right)+x\left(x+3\right)-3+10x}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x-3}{x+2}\)
\(=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{x+3}\cdot\dfrac{1}{x+2}\)
\(=\dfrac{3x^2+6x}{x+3}\cdot\dfrac{1}{x+2}=\dfrac{3x}{x+3}\)
Để P nguyên dương thì \(\left\{{}\begin{matrix}3x+9-9⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3;9;-9\right\}\\\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-4;-6;6;-12\right\}\)

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)
\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)
\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)
\(\Leftrightarrow2x-13< 0\)
\(\Leftrightarrow x< \dfrac{13}{2}\)
KL...............
\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)
\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)
\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)
\(\Leftrightarrow-19x+114< 0\)
\(\Leftrightarrow x>6\)
KL..................
Câu 4 :
Ta có :
\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)
\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)
Theo BĐT Bu - nhi a - cốp xki ta có :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)
\(\Leftrightarrow3x^2=4x^2-8x+4\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Delta=64-16=48>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}\)
\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{n}{3^{n-1}}\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}-\dfrac{n}{3^n}< 1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Tương tự ta được \(2B=3-\dfrac{1}{3^{n-1}}< 3\)
\(\Rightarrow B< \dfrac{3}{2}\Rightarrow2A< \dfrac{3}{2}\Rightarrow A< \dfrac{3}{4}\)(đpcm)
BonkingTrần Trung Nguyên làm giùm bài này luôn đi