\(\sqrt{3}-\dfrac{m}{n}>0\)
CMR:  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)

Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)

Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)

\(\Leftrightarrow3n^2\ge m^2+2\)

Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)

\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)

\(\sqrt{3}>\frac{m}{n}\Rightarrow3>\frac{m^2}{n^2}\Rightarrow3n^2>m^2\Rightarrow3n^2\ge m^2+1\)

với 3n2=m2+1=>m2+1 chia hết cho 3

=>m2 chia 3 dư 2(vô lí)

\(\Rightarrow3n^2\ge m^2+2\)

lại có:\(\left(m+\frac{1}{2m}\right)^2=m^2+1+\frac{1}{4m^2}< m^2+2\)

\(\Rightarrow\left(m+\frac{1}{2m}\right)^2< 3n^2\Rightarrow m+\frac{1}{2m}< \sqrt{3}n\)

\(\Rightarrow\frac{m}{n}+\frac{1}{2mn}< \sqrt{3}\left(Q.E.D\right)\)

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

21 tháng 7 2018

Chắc đề bị nhầm rồi.

\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)

\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)

5 tháng 8 2018

uh, mk cx nghĩ zậy

4 tháng 8 2018

Áp dụng BĐT Cauchy , ta có :

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)

\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)


NV
26 tháng 11 2018

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}};\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\dfrac{\sqrt{3}}{\sqrt{xz}}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.\dfrac{3}{\sqrt[3]{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi x=y=z=1

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

NV
4 tháng 6 2019

\(xy+xz+yz=6xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\\\frac{1}{z}=c\end{matrix}\right.\) \(\Rightarrow a+b+c=6\)

\(T=\sum x\sqrt{\frac{x}{1+x^3}}=\sum\sqrt{\frac{x^3}{1+x^3}}=\sum\sqrt{\frac{1}{1+\frac{1}{x^3}}}=\sum\frac{1}{\sqrt{1+a^3}}=\sum\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)

\(\Rightarrow T\ge\sum\frac{2}{a+1+a^2-a+1}=\sum\frac{2}{a^2+2}\)

Ta có đánh giá: \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\) với mọi \(0< a< 6\)

Thật vậy, \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\Leftrightarrow18-\left(a^2+2\right)\left(7-2a\right)\ge0\)

\(\Leftrightarrow2a^3-7a^2+4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) luôn đúng với mọi \(0< a< 6\)

Tương tự ta có: \(\frac{2}{b^2+2}\ge\frac{7-2b}{9}\) ; \(\frac{2}{c^2+2}\ge\frac{7-2c}{9}\)

\(\Rightarrow T\ge\frac{21-2\left(a+b+c\right)}{9}=\frac{21-12}{9}=1\)

\(\Rightarrow T_{min}=1\) khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)