CM x\(^2\)+y\(^2\)+z\(^2\)=x\(\sqrt{1-y^2}\)+y\(\sqrt{1-z^2}\)+z\(\sqrt{1-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Mincopxki và AM - GM ta có :
\(P=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{\sqrt[2]{\left(x+y+z\right)^2.\frac{1}{\left(x+y+z\right)^2}+80}}\)
\(\ge\sqrt{2+80}=\sqrt{82}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Lời giải:
Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:
\(ab+bc+ac=1\) và cần phải CMR:
\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)
-----------------------------------------------
Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)
\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)
\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)
\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)
Tương tự:
\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)
\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)
Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)
\(=0\)
Ta có đpcm.
Bạn tham khảo tại đây:
Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến
Cái thứ nhất nhân cả tử với mẫu với x
Cái thứ hai nhân cả tử với mẫu với y
Cái thứ ba nhân cả tử với mẫu với z
Áp dụng cô si ở mẫu
dấu = xảy ra khi x=y=z=1( không TM) => Không xảy ra dấu =
=> đpcm
p/s: Mình định trình bày đầy đủ cho bạn nhưng đánh gần xong thì tự nhiên máy tính thoát ra. giờ thì hướng dẫn thôi. Sorry
Chứng minh BĐT \(\ge2\)chứ?
Ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự ta có: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\)
Và: \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng theo 3 vế BĐT trên ta có:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2x^3+2y^3+2z^3=2\left(x^3+y^2+z^2\right)=2\left(đpcm\right)\)
Sử dụng bất đẳng thức Minkovski, ta có:
\(P = \sqrt {{{\left( {x + y + z} \right)}^2} + {{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)}^2}} \)
\( \ge \sqrt {\left[ {{{\left( {x + y + z} \right)}^2} + \frac{1}{{{{\left( {x + y + z} \right)}^2}}}} \right] + \frac{{80}}{{{{\left( {x + y + z} \right)}^2}}}} \)
\(\ge \sqrt{2+\dfrac{80}{1}} =\sqrt{82}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}.\)
Kết luận ...
\(\sqrt{x^2+\dfrac{1}{x^2}}=\dfrac{1}{\sqrt{82}}\sqrt{\left(1^2+9^2\right)\left(x^2+\dfrac{1}{x^2}\right)}\ge\dfrac{1}{\sqrt{82}}\left(x+\dfrac{9}{x}\right)\)
tương tự với \(\sqrt{y^2+\dfrac{1}{y^2}};\sqrt{z^2+\dfrac{1}{z^2}}\)
\(=>P\ge\dfrac{1}{\sqrt{81}}\left(x+\dfrac{9}{x}+y+\dfrac{9}{y}+z+\dfrac{9}{z}\right)\)
có \(x+\dfrac{9}{x}=x+\dfrac{1}{9x}+\dfrac{80}{9x}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{80}{9x}\)
tương tự với \(y+\dfrac{9}{y};z+\dfrac{9}{z}\)
\(=>P\ge\dfrac{1}{\sqrt{82}}\left[2\sqrt{\dfrac{1}{9}}.3+\dfrac{\left(\sqrt{80}+\sqrt{80}+\sqrt{80}\right)^2}{9\left(x+y+z\right)}\right]=\dfrac{1}{\sqrt{82}}.82=\sqrt{82}\)
dấu"=" xảy ra<=>x=y=z=1/3