cho tam giác ANC cân tại A có BC = 6cm, đg cao AH = 4cm.tính đg cao ứng vs cạnh bên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB^2=3^2+4^2=25\)
=>AB=5(cm)
Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}=\dfrac{4}{5}\)
\(cosB=\dfrac{BH}{AB}=\dfrac{3}{5}\)
\(tanB=\dfrac{AH}{BH}=\dfrac{4}{3}\)
\(cotB=\dfrac{BH}{AH}=\dfrac{3}{4}\)
a: Gọi giao của AH với BC là M
=>AH vuông góc BC tại M
góc AFH=góc AEH=90 độ
=>AEHF nội tiếp đường tròn đường kính AH
=>IF=IA=IE=IH
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
=>KF=KE=KB=KC
góc IFH+góc KFH
=góc IHF+góc KCH
=góc KCH+90 độ-góc KCH=90 độ
=>FK vuông góc FI
b: FI=AH/2=3cm
FK=BC/2=4cm
=>IK=căn 3^2+4^2=5cm
2) A B C D
ÁP dụng định lí pitago ta có
\(AB=\sqrt{BD^2-DA^2}\)
\(=\sqrt{\sqrt{10}^2-1}=3cm\)
áp dụng hàm sin ta có
\(sin\left(\widehat{ABD}\right)=\frac{AD}{BD}\Leftrightarrow sin\left(X\right)=\frac{1}{\sqrt{10}}\)( shift slove )
\(\Rightarrow\widehat{ABD}\approx18,5^O\Rightarrow B=37^O\)
ÁP DỤNG HÀM COS TA CÓ
\(cos\left(B\right)=\frac{AB}{BC}=\frac{3}{BC}\Rightarrow BC=\frac{3}{cos\left(37\right)}\approx3,7cm\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=1,5\)
=> \(S_{ABC}=\frac{3\cdot1,5}{2}=2,25CM^2\)
Nghĩ sao làm vậy nên thông cảm ^_^ bạn có thể áp dụng cách này
1. https://olm.vn/hoi-dap/question/103400.html
Bạn tham khảo link này nhé
a: Xét ΔHAB vuông tại H và ΔBAC vuôg tại B có
góc A chung
=>ΔHAB đồng dạng với ΔBAC
b: ΔBAC vuôngtại B có BH là đường cao
nên BH^2=AH*AC
a: BH=CH=3cm
=>AB=AC=5cm
AB=AC<BC
=>góc B=góc C<góc A
b: O nằm trên trung trực của AB,AC
=>OA=OB=OC
=>O nằm trên trung trực của BC
=>A,O,H thẳng hàng
Gọi đường cao tương ứng cạnh AC là BK
Vì AH là đg cao tam giác ABC cân nên AH cũng là trung tuyến
\(\Rightarrow CH=\dfrac{1}{2}BC=3\left(cm\right)\)
Áp dụng PTG: \(AC=\sqrt{AH^2+CH^2}=5\left(cm\right)\)
Lại có \(S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}BK\cdot AC\)
\(\Rightarrow BK=\dfrac{AH\cdot BC}{AC}=\dfrac{4\cdot6}{5}=2,4\left(cm\right)\)
Xét Δ ABC cân tại A có BC = 30( cm )
⇒ BH = CH = 15( cm ).
Áp dụng đinh lý Py – ta – go ta có:
tam giác ABC