A=102013+8 chứng minh A chia hết cho72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:10^28=1000...000(28 chữ số 0)có tổng các chữ số là 1
10^28+8=1000...08 có tổng các chữ số là:1+8=9
suy ra đpcm
ta có:abcdeg=1000ab+100cd+eg=999ab+ab+99cd+cd+eg=(999ab+99cd)+(ab+cd+eg)
vì 999ab+99cd chia hết cho 11mà theo bài ra ab+cd+egchia hết cho 11.Suy ra abcdegchia hết cho 11
a, Ta có: abcdeg = ab0000 + cd00 + eg
= ab.10000 + cd.100 + eg
= ab.9999 + ab + cd.99 + cd + eg
= ab.11.909 + ab + cd.11.9 + cd + eg
= 11(ab.909 + cd.9) + (ab + cd + eg)
Vì 11(ab.909 + cd.9) \(⋮\)11 và (ab + cd + eg) \(⋮\)11 nên abcdeg \(⋮\)11 (đpcm)
b, Ta có: 1028 + 8 = 100.......008 (27 c/s 0)
Vì 1028 + 8 có 3 chữ số tận cùng là 008 nên 1028 + 8 \(⋮\) 8 (1)
Lại có: 1 + 0 + 0 +....+ 0 + 0 + 8 = 9 \(⋮\)9 => 1028 + 8 \(⋮\) 9 (2)
Mà ƯCLN(8,9) = 1 (3)
Từ (1) ; (2) và (3) suy ra 1028 + 8 \(⋮\)72
\(10\equiv1\left(mod3\right)\Leftrightarrow10^{2013}\equiv1\left(mod3\right)\\ 2014\equiv1\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014\equiv1-1=0\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014⋮3\)
để 1028 +8 chia hết cho 72 =>1028 +8 sẽ chia hết cho 8,9. Vì (8,9)=1
Ta có1028 +8 sẽ luôn luôn chia hết cho 8 (1)
Ta có: 1028 +8= 10...........0(28 chữ số 0) +8=10...........8 ( có tổng bằng 9) (2)
Từ (1),(2)=> 1028 +8 sẽ chia hết cho 72
Để cm 1028+8 chia hết cho 72 ta sẽ cm 1028+8 chia het cho 8,9
Ta có 1028+8=1000.1024+8(Vì 1000 chia hết cho8) =>1000.1024+8 chia hết cho 8(1)
ta lại có 1028+8 có tổng các c/s =9 1028+8(2)
Từ (1) và (2) => ĐPCM
Ta có: 102013 + 8 = 1000...0008 (có 2012 chữ số 0)
=> chia hết cho 9
Ta có : 8 chia hết cho 8 ; 102013 chia hết cho 22013 chia hết cho 23 = 8
Vậy A chia hết cho 8 và 9
Vậy A chia hết cho 8 x 9 = 72