K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B

19 tháng 8 2018

\(16^8-8^{10}+4^{14}\)

\(=2^{32}-2^{30}+2^{28}\)

\(=2^{28}\cdot\left(2^4-2^2+1\right)\)

\(=2^{24}\cdot2^4\cdot13\)

\(=2^{24}\cdot208⋮208\left(đpcm\right)\)

19 tháng 8 2018

16^8-8^10+4^14

= (2^4)^8-(2^3)^10+(2^2)^14

= 2^32-2^30+2^28

= 2^28(2^4-2^2+1)= 2^18 x 13 = 2^14 x 2^4 x 13 = 2^14 x 208 chia hết cho 208

11 tháng 8 2023

a) Lập bảng

n 1 2 3 4 5 6 7 8 ...
7n 7 9 3 1 7 9 3 1 ...
9n 9 1 9 1 9 1 9 1 ...

Ta có: 2018 : 4 = 504 (dư 2)

Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)

Vậy 20172018 + 20192018 chia hết cho 10

b) Làm tương tự như câu a)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)

20 tháng 8 2018

a)

\(7^6+7^5-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\left(đpcm\right)\)

Mấy câu kia tương tự, dài quá 

13 tháng 9 2016

10^6 - 5^7 
= (2^6 x 5^6) - 5^7 
= 5^6 x (2^6 - 5) 
= 5^6 x 59 
vậy nó chia hết cho 59. 

20 tháng 10 2016

10^6-5^7

=5^6.2^6-5^7

=5^6.2^6-5^6.5

=5^6.(2^6-5)

=5^6.59 chia hết cho 59

8 tháng 8 2019

Ta có: \(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.2.7\)

\(=2^{17}.14\)

\(14⋮14\) nên \(2^7.14⋮14.\)

=> \(8^7-2^{18}⋮14\left(đpcm\right).\)

Chúc bạn học tốt!

8 tháng 8 2019

*Ta có : 87 - 218

= (23)7 - 218

= 221 - 218

= 218 . ( 8 - 1)

= 217 . 2 . 7

= 217 . 14 \(⋮\) 14

*Hay : 87 - 218 \(⋮\) 14. (đpcm)

*Tick nhé bạn!