K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

\(\text{ĐK: }x\ge9\)

Côsi: \(x=\left(x-9\right)+9\ge2\sqrt{9\left(x-9\right)}=6\sqrt{x-9}\)

\(\Rightarrow S=\frac{\sqrt{x-9}}{5x}\le\frac{\sqrt{x-9}}{5.6\sqrt{x-9}}=\frac{1}{30}.\)

Đẳng thức xảy ra khi \(x-9=9\Leftrightarrow x=18.\)

21 tháng 6 2017

viết x = (x - 9) + 9 

do x - 9 nằm trong căn bậc hai nên nó ko âm 

sử dụng cauchy cho hai số x - 9 và 9 ta có 

x = (x - 9) + 9 >=2căn(9*(x-9))=6*căn(x-9) 

suy ra A <=1/30 

dấu bằng có được khi x = 18 lúc đó max A = 1/30

Vậy...

16 tháng 10 2019

Với  \(x\ge9\).

Ta có:  \(A=\frac{\sqrt{x-9}}{5x}\)

<=> \(5Ax=\sqrt{x-9}\)

<=> \(\hept{\begin{cases}A\ge0\\25A^2x^2=x-9\left(1\right)\end{cases}}\)

(1) <=> \(25A^2x^2-x+9=0\)

phương trình trên có nghiệm  <=> \(\Delta\ge0\)<=> \(1^2-900A^2\ge0\)<=> \(-\frac{1}{30}\le A\le\frac{1}{30}\)

=> \(Amax=\frac{1}{30}\) xảy ra <=> \(25.\frac{1}{900}x^2-x+9=0\Leftrightarrow x=18>9\)(thỏa mãn)

Vậy:...

16 tháng 10 2019

Nguyễn Linh Chi em có cách lớp 8 (nâng cao) này:)

ĐK: x>= 9

Xét a > 0.

Ta có: \(A=\frac{1}{\sqrt{a}}.\frac{\sqrt{a\left(x-9\right)}}{5x}\le\frac{1}{\sqrt{a}}.\frac{a+x-9}{10x}=\frac{\sqrt{a}}{10x}+\frac{1}{10\sqrt{a}}-\frac{9}{10x\sqrt{a}}\)

\(=\frac{1}{10x}\left(\sqrt{a}-\frac{9}{\sqrt{a}}\right)+\frac{1}{10\sqrt{a}}\)

Như vậy ta chọn a để biểu thức không phụ thuộc vào biến x. Tức là \(\sqrt{a}-\frac{9}{\sqrt{a}}=0\Leftrightarrow a=9\)

Bây giờ thay ngược a bởi 9 vào các cái bên trên là xong:D. Ta được: \(A\le\frac{1}{30}\)

Đẳng thức xảy ra khi a = x -9 <=> 9 =x-9<=>x=18

30 tháng 10 2021

các bn giải giúp mk với các bn ơiiiiiii

26 tháng 12 2021

hỏi 1 tháng chưa ai trả lời ._.

 

29 tháng 8 2018

\(\frac{5x-3}{2x}+\sqrt{3x+y}xđ\Leftrightarrow\hept{\begin{cases}2x\ne0\\3x+y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ge-\frac{y}{3}\end{cases}}}\)

\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}xđ\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x+3>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x>-3\end{cases}\Rightarrow x\ge\frac{1}{3}}\)

16 tháng 10 2016

a/ \(\frac{7-3\sqrt{x}}{\sqrt{x}+4}>-3\)

<=> \(7-3\sqrt{x}>-3\sqrt{x}-12\)

<=> 19 > 0 (đúng)

16 tháng 10 2016

Hàm này là hàm nghịch biến nên max là \(\frac{7}{4}\) khi x = 0

NV
19 tháng 9 2020

\(S=-\frac{1}{2}\left(3x+3-2\sqrt{2x^2+5x+2}+x+7-4\sqrt{x+3}\right)+5\)

\(=-\frac{1}{2}\left[\frac{\left(x-1\right)^2}{3x+3+2\sqrt{2x^2+5x+2}}+\frac{\left(x-1\right)^2}{x+7+4\sqrt{x+3}}\right]+5\le5\)

\(S_{max}=5\) khi \(x=1\)