1. Cho đoạn thẳng AB, và 2 điểm phân biệt M,N thỏa mãn, MA = MB, NA = NB ( MA > NA ). CMR
a) tam giác MAN = tam giác MBN
b) MN là đg trung trực của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
??????????????
Đéo hiể đề bài cho đoạn thẳng phân biệt
mà đòi cm trung trực mới chất
t chịu ok
Vì MA = MB => MN là trung tuyến
mà NB = NA => tam giác ANB cân tại N
=> MN là trung trực
study well
a) M nằm trong tam giác nên ABM
=> A, M, I không thẳng hang
Theo bất đẳng thức tam giác với ∆AMI:
AM < MI + IA (1)
Cộng vào hai vế của (1) với MB ta được:
AM + MB < MB + MI + IA
Mà MB + MI = IB
=> AM + MB < BI + IA
b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)
cộng vào hai vế của (2) với IA ta được:
BI + IA < IA + IC + BC
Mà IA + IC = AC
Hay BI + IA < AC + BC
c) Vì AM + MB < BI + IA
BI + IA < AC + BC
Nên MA + MB < CA + CB
.
a) M nằm trong tam giác nên ABM
=> A, M, I không thẳng hang
Theo bất đẳng thức tam giác với ∆AMI:
AM < MI + IA (1)
Cộng vào hai vế của (1) với MB ta được:
AM + MB < MB + MI + IA
Mà MB + MI = IB
=> AM + MB < BI + IA
b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)
cộng vào hai vế của (2) với IA ta được:
BI + IA < IA + IC + BC
Mà IA + IC = AC
Hay BI + IA < AC + BC
c) Vì AM + MB < BI + IA
BI + IA < AC + BC
Nên MA + MB < CA + CB
a) M nằm trong tam giác nên ABM
=> A, M, I không thẳng hang
Theo bất đẳng thức tam giác với ∆AMI:
AM < MI + IA (1)
Cộng vào hai vế của (1) với MB ta được:
AM + MB < MB + MI + IA
Mà MB + MI = IB
=> AM + MB < BI + IA
b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)
cộng vào hai vế của (2) với IA ta được:
BI + IA < IA + IC + BC
Mà IA + IC = AC
Hay BI + IA < AC + BC
c) Vì AM + MB < BI + IA
BI + IA < AC + BC
Nên MA + MB < CA + CB
a) 3 điểm M,N,B không thẳng hàng.
Áp dụng bất đẳng thức tam giác trong tam giác MNB có:
MB < MN + NB
MA + MB < MA + MN + NB
MA + MB < NA + NB ( vì MA + MN = NA) (1)
b) 3 điểm A,N,C không thẳng hàng.
Áp dụng bất đẳng thức tam giác trong tam giác ACN có:
NA < CA + CN
NA + NB < CA + CN + NB
NA + NB < CA + CB ( vì CN + NB = CB) (2)
c) Từ (1) và (2) ta có:
MA + MB < NA + NB < CA + CB
Vậy MA + MB < CA + CB
a: Ta có:M nằm trên đường trung trực của AB
nên MA=MB