K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

??????????????

Đéo hiể đề bài cho đoạn thẳng phân biệt

mà đòi cm trung trực mới chất

t chịu ok

M A B N

Vì MA = MB => MN là trung tuyến 

mà NB = NA => tam giác ANB cân tại N

=> MN là trung trực 

study well 

2 tháng 4 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

.

2 tháng 4 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

2 tháng 4 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

mik dg kan kau d gấp lắm 

a: Ta có:M nằm trên đường trung trực của AB

nên MA=MB

13 tháng 1 2017

Câu 1

Gọi I là giao điểm của đường thẳng d và AB

Xét tam giác AMN và tam giác BMN có:

Góc MIA = góc MIB = góc AIN = góc NIB (d là đường trung trực của AB)

IA = IB (d là đường trung trực của AB)

=> Tam giác MAN = tam giác MBN (g.c.g)

=> MA = MB; NA = NB (2 cạnh tương ứng)