K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

21 tháng 11 2023

2^2018-2017=2^2=4

21 tháng 11 2023

22018 - 22017 = 22018-2017= 21 =2 

4 tháng 1 2024

\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)

\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)

\(=>2B+B=2^{2019}-2^{2014}\)

\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

GHI RÕ CÁCH LÀM LUÔN ĐC KO Ạ

10 tháng 12 2021

\(\left(x+4\right)⋮\left(2x+1\right)\\ \Rightarrow\left(2x+8\right)⋮\left(2x+1\right)\\ \Rightarrow\left(2x+1+7\right)⋮\left(2x+1\right)\)

 \(Mà\left(2x+1\right)⋮\left(2x+1\right)\Rightarrow7⋮\left(2x+1\right)\Rightarrow2x+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\Rightarrow x\in\left\{-4;-1;0;3\right\}\)

10 tháng 12 2021

\(\Leftrightarrow2x+1\in\left\{1;7;-1;-7\right\}\)

hay \(x\in\left\{0;3;-1;-4\right\}\)

15 tháng 8 2023

Ta có:

A = 2 + 2+ 23 + … + 22017

2A = 2.( 2 + 2+ 23 + … + 22017)

2A = 22 + 23 + 24 + … + 22018

2A – A = (22 + 23 + 24 + … + 22018) – (2 + 2+ 23 + … + 22017)

 Vậy  A = 22018 – 2

16 tháng 8 2023

Ta có: A = 2 + 2+ 23 + … + 22017

2A = 2.( 2 + 2+ 23 + … + 22017)

2A = 22 + 23 + 24 + … + 22018

2A – A = (22 + 23 + 24 + … + 22018) – (2 + 2+ 23 + … + 22017)

A = 22018 – 2

Vậy A = 22018 – 2

16 tháng 8 2023

tick cho mink nhé

😊

b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)

a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)

\(1^2=1\)

mà \(37-12\sqrt{10}< 0\)

nên \(2\sqrt{5}-3\sqrt{2}< 1\)

Sửa đề: A=2+2^2+2^3+...+2^2017

=>2*A=2^2+2^3+2^4+...+2^2018

=>2A-A=2^2018-2

=>A=2^2018-2