Tính giá trị lớn nhất của Q = \(\frac{2x+1}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)
\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)
\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)
Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm
\(\Rightarrow\Delta^'_x\ge0\)
\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+4A+2\ge0\)
\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)
Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)
Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được
Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
2)a) \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow|2x-1|=3\)(1)
+) TH1 : \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\) khi đó : \(|^{ }2x-1|=2x-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x-1=3\Leftrightarrow2x=4\Leftrightarrow x=2\left(tmđk\right)\)
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)
Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)
Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0
suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y
\(Q=\frac{2x+1}{x^2+2}\)
\(Q=\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(Q=\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(Q=1-\frac{\left(x-1\right)^2}{x^2+2}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\frac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\)
\(\Rightarrow Q\le1-0=1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(Q_{max}=1\Leftrightarrow x=1\)