Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))
=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)
Vậy MaxP = 1/5 khi x = -1
câu b tương tự
a)P lớn nhất khi \(x^2+2x+6\) nhỏ nhất
Ta có: \(x^2+2x+6\\ =x^2+2.x.1+1^2+5\\ =\left(x+1\right)^2+5\ge5\)
=>GTNN của $x^2+2x+6$ là 5
Vậy GTLN của \(P=\frac{1}{x^2+2x+6}\)là \(\frac{1}{5}\)
a) \(P=\frac{1}{x^2+2x+6}=\frac{1}{x^2+2x+1+5}=\frac{1}{\left(x+1\right)^2+5}\)
Tử thức P là hằng số dương nên P đạt giá trị
lớn nhất khi mẫu thức của nó nhận giá trị nhỏ nhất
Vì \(\left(x+1\right)^2+5\ge5\) với mọi x và \(\left(x+1\right)^{^{ }2}+5\)
đạt giá trị nhỏ nhất bằng 5 khi x+1=0 <=>x=-1
Vậy P đạt giá trị lớn nhất MaxP=1/5 khi x=-1
C1 :
\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
C2 :
\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)
\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)
+) Nếu \(B=1\) thì \(x=0\)
+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)
\(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)
\(\Leftrightarrow\)\(4B-3\ge0\)
\(\Leftrightarrow\)\(B\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
a) Xét mẫu thức : \(x^3-3x-18=\left(x-3\right)\left(x^2+3x+6\right)\)
\(M=\frac{x-3}{x^3-3x-18}=\frac{x-3}{\left(x-3\right)\left(x^2+3x+6\right)}=\frac{1}{x^2+3x+6}=\frac{1}{\left(x+\frac{3}{2}\right)^2+\frac{15}{4}}\le\frac{4}{15}\)
Dấu "=" xảy ra <=> x = -3/2
Vậy Max M = 4/15 tại x = -3/2
b) \(N=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\). Đặt \(y=x+1\)\(\Rightarrow x=y-1\)
Suy ra \(N=\frac{\left(y-1\right)^2+\left(y-1\right)+1}{y^2}=\frac{y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+1\)
Lại đặt \(t=\frac{1}{y}\), \(N=t^2-t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{2}\Leftrightarrow y=2\Leftrightarrow x=1\)
Vậy Min N = 3/4 tại x = 1
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
a) \(ĐKXĐ:x\ne\pm1\)
\(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)
\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-1}{x+1}\)
b) Khi \(\left|x+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)
Thay \(x=-3\)vào Q ta được :
\(Q=\frac{-1}{-3+1}=\frac{1}{2}\)
c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\)
Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)
c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !
Xin lỗi vì đọc nhầm đề
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)