Tìm x:
\(\frac{X+1}{2x}\)= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
mà 1/10+1/11+1/12-1/13-1/14 khác 0 nên x+1=0
x=0-1
x=-1
Vậy x=-1
b)(2x-1)8=(2x-1)6
(2x-1)8-(2x-1)6=0
(2x-1)6[(2x-1)2-1]=0
=> (2x-1)6=0 hoặc (2x-1)2-1=0
2x-1=0 (2x-1)2=1
2x=1 => 2x-1=1 hoặc 2x-1=-1
x=1/2 2x=2 2x=0
x=1 x=0
Vậy x=1/2 hoặc x=1 hoặc x=0
\(\frac{x+1}{2x-2}+\frac{2}{1-x^2}=\frac{x-1}{2x+2}\)
\(\frac{x+1}{2\left(x-1\right)}-\frac{2}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{2\left(x+1\right)}=0\)
ĐKXĐ: x \(\ne\) + 1
\(\frac{\left(x+1\right)^2-4-\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}=0\)
\(\frac{x^2+2x+1-4-x^2+2x-1}{2\left(x-1\right)\left(x+1\right)}=0\)
\(\frac{4x-4}{2\left(x-1\right)\left(x+1\right)}=0\)
\(\frac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=0\)
\(\frac{4}{2\left(x+1\right)}=0\)
\(\Rightarrow x\in\phi\)
ĐK : x khác 1 ; -1
Pt <=> (x + 1 )^2 - 4 = (x-1)^2
<=> x^2 +2x+ 1 - 4 = x^2 - 2x + 1
=> 4x = 4
=> x = 1 (loại )
\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)
\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)
\(\Rightarrow x^2-3x-6=0\)
.....
\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)
\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)
.....
#)Giải :
\(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-3-x+\frac{1}{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\x=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}}\)
a) \(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}+3\)
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy...
b) \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-1=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-x=3-\frac{1}{3}+1\)
\(\Leftrightarrow x=\frac{11}{3}\)
Vậy ...
c) \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\frac{49}{50}=\frac{349}{50}+x\)
\(\Leftrightarrow2x-x=\frac{349}{50}+\frac{49}{50}\)
\(\Leftrightarrow x=\frac{199}{25}\)
Vậy ...
ĐKXĐ: \(x\ne0\)
\(\frac{x+1}{2x}=1\Rightarrow x+1=2x\Rightarrow x=1\) (thỏa mãn ĐKXĐ)
Vậy x = 1