K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

tích hộ mình

18 tháng 12 2017

lớp mấy thế và sao bạn biết kết bạn với mk

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

11 tháng 2 2020

a) \(ĐKXĐ:x\ne1\)

b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)

\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)

\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(=\frac{1}{x-1}\)

c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .

P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.

Tại thấy câu c k khác j câu a !

28 tháng 12 2020
Bạn tham khảo!

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

31 tháng 5 2017

a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b) bạn rút gọn, biểu thức sẽ bằng 4 

=> giá tri của biểu thức sẽ không phụ thuộc vào biến x

31 tháng 5 2017

tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái

29 tháng 6 2016

c.ơn bạn =))

31 tháng 3 2020

a) ĐKXĐ: x khác +-1

b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)

\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-\frac{2}{x-1}\)