Cho tam giác ABC . Trên tia đối của tia AB lấy điểm nE sao cho DA=BA,EA=CA.
a) Chứng minh rằng : DC=DE
b) gọi M,N lần lượt là trung điểm của BC,DE . Chứng minh cho 3 điểm M,A,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ACNB có
M là trung điểm của BC
M là trung điểm của AN
Do đó:ACNB là hình bình hành
Suy ra: CN//AB
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
a: Xét ΔAMB và ΔKMC có
MA=MK
\(\widehat{AMB}=\widehat{KMC}\)
MB=MC
Do đó: ΔAMB=ΔKMC
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của FE
hay F,M,E thẳng hàng
a) xét tam giác ADM và tam giac BDC ta có
MD=DC (gt)
AD=DB(D là trung điểm AB)
góc ADM=góc BDC (2 góc doi đỉnh)
-> tam giác ADM= tam giác BDC (c-g-c)
b) ta có
góc MAD = góc DBC ( tam giác ADM= tam giác BDC )
mà 2 góc nẳm o vị trí soletrong
nên AM//BC
c)
xét tam giác AEN và tam giac BEC ta có
EN=EB (gt)
AE=EC(E là trung điểm AC)
góc AEN=góc BEC (2 góc doi đỉnh)
-> tam giác ANE = tam giác CBE (c-g-c)
-> góc NAE = góc BCE (2 góc tương ứng
mà 2 góc nằm o vi trí sole trong
nên AN//BC
ta có
AN//BC (cmt)
AM//BC (cmb)
-> AM trùng AN
-> A,M,N thẳng hàng
*-Bạn tự vẽ hình nhé!*
CM:a) Xét tam giác ADM và tam giác BDC có:
AD=BD(D là trung điểm của AB)
Góc ADM=góc BDC(đối đỉnh)
DM=DC(gt)
=> tgiac ADM = tgiac BDC (c.g.c)
b) =>góc MAD= góc DBC (hai góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AM song song BC (1)
c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)
=> góc NAE= góc CEB(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BC song song AN (2)
Từ (1) và (2)=> MA song song BC; AN song song BC
=> A,M,N thẳng hàng (ơ-clit)
*- cho mk nha!!!-Mơn b *:)*