Tính
A= 1*2^2+2*3^2+3*4^2+.....+2017*2018^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\)
=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\)
=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\)
=\(\dfrac{7}{5}+\dfrac{-1}{4}\)
=\(\dfrac{23}{20}\)
b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\)
=\(\left[0+0\right]:\dfrac{2017}{2018}\)
=0\(:\dfrac{2017}{2018}\)
=0
c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10
+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.
+) Số số hạng của A là:
A = (2018 - 1) : 1 + 1 = 2018.
+) Tổng A là: (2018 + 1). 2018 : 1 = 4074342.
Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 4074342).
1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182
= 1x2x3x...x2018x(2019 - 1 - 2018)
= 1x2x3x...x2018x0
= 0
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)