K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

ý A đúng (dựa vào tính chất từ vuông góc đến song song)

9 tháng 12 2018

A. a//b

c a b

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

Hỏi đáp Toán

gọi M,N lần lượt là trung điểm của GC, AB.

M', N' lần lượt là hình chiếu của M và N trên d.

ta có G là trọng tâm của tam giác ABC

\(\Rightarrow GM=MC=NG\)

hình thang GG'C'C : \(\left\{{}\begin{matrix}GM=MC\\MM'\text{//}GG'\left(\perp d\right)\end{matrix}\right.\)

do đó MM' là dg trung bình của hình thang GG'C'C.

\(\Rightarrow2MM'=GG'+CC'\)(1)

tương tự, hình thang B'BAA' có: \(2NN'=BB'+AA'\)(2)

hình thang NN'M'N có: \(2GG'=NN'+MM'\)(3)

• từ (1),(2) và (3) suy ra : \(4GG'=CC'+GG'+BB'+AA'\)

\(\Leftrightarrow4GG'-GG'=CC'+BB'+AA'\\ \Leftrightarrow3GG'=CC'+BB'+AA'\left(đpcm\right)\)

26 tháng 10 2021

hình nó nhỏ quá ko thấy đg thẳng a!

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: DA=DK và \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

Ta có: BA=BK

DA=DK

Do đó: BD là đường trung trực của AK

hay BD\(\perp\)AK

b: \(\widehat{ADK}=180^0-2\cdot\widehat{AKD}=180^0-2\cdot38^0=104^0\)

=>\(\widehat{ABC}=360^0-90^0-90^0-104^0=76^0\)

=>\(\widehat{ACB}=90^0-76^0=14^0\)

22 tháng 4 2020

a) Có: \(\widehat{A}=3\widehat{B}=6\widehat{C}\)

\(\Rightarrow\frac{\widehat{A}}{6}=\frac{3\widehat{B}}{6}=\frac{6\widehat{C}}{6}\)

\(\Rightarrow\frac{\widehat{A}}{6}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{\widehat{A}}{6}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{6+2+1}=\frac{180^0}{9}=20^0\)

\(\frac{\widehat{A}}{6}=20^0\Rightarrow\widehat{A}=20^0.6=120^0\)

\(\frac{\widehat{B}}{2}=20^0\Rightarrow\widehat{B}=20^0.2=40^0\)

\(\frac{\widehat{C}}{1}=20^0\Rightarrow\widehat{C}=20^0.1=20^0\)

b/ Theo đề ta có: ΔADB vuông tại D

\(\Rightarrow\widehat{DAB}+\widehat{B}=90^0\)

\(\Rightarrow\widehat{DAB}=90^0-\widehat{B}=90^0-40^0=50^0\)

Xét ΔADB có: \(\widehat{DAB}< \widehat{B}\left(50^0< 40^0\right)\)

=> DB < AD (quan hệ giữa góc và cạnh trong cùng một tam giác) (1)

Theo đề ta có: ΔACD vuông tại D

\(\Rightarrow\widehat{CAD}+\widehat{C}=90^0\)

\(\Rightarrow\widehat{CAD}=90^0-\widehat{C}=90^0-20^0=70^0\)

Xét ΔACD có: \(\widehat{CAD}>\widehat{C}\left(70^0>20^0\right)\)

=> CD > AD (quan hệ giữa góc và cạnh trong cùng một tam giác)

Hay: AD < CD (2)

Từ (1) và (2) => BD < AD < CD

P/s: Đề bị sai hay mình làm sai nhỉ ?

17 tháng 4 2022

B

NV
17 tháng 4 2022

c, d đều là mệnh đề sai

Ví dụ: a và b cắt nhau và cùng thuộc mp (P), nếu c vuông góc (P) thì c vuông góc cả a và b \(\Rightarrow\) góc giữa a và c bằng góc giữa b và c (đều bằng 90 độ) nhưng a và b không song song