K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a)3n-3+2 chia hết cho n-1

3(n-1)+2 chia hết cho n-1

n-1e Ư(2)=1;2

n=2;n=3

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

19 tháng 12 2023

Em con quá non

15 tháng 2 2017

Giải giúp mk cụ thể từng bước nhak mấy p

thanghoa

15 tháng 2 2017

Mình không hiểu lắm bạn à ... nó không có kết quả cụ thể sao ?

Gọi d=ƯCLN(3n+1;4n+1)

\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d

\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d

hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d

\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.

Phần còn lại làm tương tự nha bạn.

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

25 tháng 10 2016

đề kiểu gì mà nhiều vậy pạn

kiểu vậy làm mệt lắm

25 tháng 10 2016

co minh giao do